Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Microwave oven cooks up solar cell material: Nanocrystal semiconductor for photovoltaics, medical sensors, heat reuse

A small, prototype solar cell that uses CZTS, a photovoltaic semiconductor that University of Utah metallurgists produced in an old microwave oven that once heated student lunches.

Credit: Lee J. Siegel, University of Utah.
A small, prototype solar cell that uses CZTS, a photovoltaic semiconductor that University of Utah metallurgists produced in an old microwave oven that once heated student lunches.

Credit: Lee J. Siegel, University of Utah.

Abstract:
University of Utah metallurgists used an old microwave oven to produce a nanocrystal semiconductor rapidly using cheap, abundant and less toxic metals than other semiconductors. They hope it will be used for more efficient photovoltaic solar cells and LED lights, biological sensors and systems to convert waste heat to electricity.

Microwave oven cooks up solar cell material: Nanocrystal semiconductor for photovoltaics, medical sensors, heat reuse

Salt Lake City, UT | Posted on May 6th, 2013

Using microwaves "is a fast way to make these particles that have a broad range of applications," says Michael Free, a professor of metallurgical engineering. "We hope in the next five years there will be some commercial products from this, and we are continuing to pursue applications and improvements. It's a good market, but we don't know exactly where the market will go."

Free and the study's lead author, Prashant Sarswat, a research associate in metallurgical engineering, are publishing their study of the microwaved photovoltaic semiconductor - known as CZTS for copper, zinc, tin and sulfur - in the June 1 issue of the Journal of Crystal Growth.

In the study, they determined the optimum time required to produce the most uniform crystals of the CZTS semiconductor - 18 minutes in the microwave oven - and confirmed the material indeed was CZTS by using a variety of tests, such as X-ray crystallography, electron microscopy, atomic force microscopy and ultraviolet spectroscopy. They also built a small photovoltaic solar cell to confirm that the material works and demonstrate that smaller nanocrystals display "quantum confinement," a property that makes them versatile for different uses.

"It's not an easy material to make," Sarswat says. "There are a lot of unwanted compounds that can form if it is not made properly."

Sarswat says that compared with photovoltaic semiconductors that use highly toxic cadmium and arsenic, ingredients for CZTS photovoltaic material "are more environmentally friendly."

Free adds: "The materials used for this are much lower cost and much more available than alternatives," such as indium and gallium often used in semiconductors.

Making an Old Material More Quickly

Swiss researchers first invented CZTS in 1967 using another method. Other researchers discovered in 1998 that it could serve as a photovoltaic material. But until recently, "people haven't explored this material very much," Sarswat says. CZTS belongs to a family of materials named quaternary chalcogenides.

Without knowing it at first, Free and Sarswat have been in a race to develop the microwave method of making CZTS with a group of researchers at Oregon State University. Sarswat synthesized the material using microwaves in 2011. Free and Sarswat filed an invention disclosure on their method in January 2012, but the other group beat them into print with a study published in August 2012.

The method developed by Sarswat and Free has some unique features, including different "precursor" chemicals (acetate salts instead of chloride salts) used to start the process of making CZTS and a different solvent (oleylamine instead of ethylene glycol.)

Sarswat says many organic compounds are synthesized with microwaves, and Free notes microwaves sometimes are used in metallurgy to extract metal from ore for analysis. They say using microwaves to process materials is fast and often suppresses unwanted chemical "side reactions," resulting in higher yields of the desired materials.

CZTS previously was made using various methods, but many took multiple steps and four to five hours to make a thin film of the material, known technically as a "p-type photovoltaic absorber," which is the active layer in a solar cell to convert sunlight to electricity.

A more recent method known as "colloidal synthesis" - preparing the crystals as a suspension or "colloid" in a liquid by heating the ingredients in a large flask - reduced preparation time to 45 to 90 minutes.

Sarswat decided to try microwave production of CZTS when the University of Utah's Department of Metallurgical Engineering decided to get a new microwave oven for the kitchen where students heat up their lunches and make coffee.

"Our department secretary had a microwave to throw away," so Sarswat says he took it to replace one that had recently burned up during other lab experiments.

"The bottom line is you can use just a simple microwave oven to make the CZTS semiconductor," Free says, adding: "Don't do it at home. You have to be cautious when using these kinds of materials in a microwave."

By controlling how long they microwave the ingredients, the metallurgists could control the size of the resulting nanocrystals and thus their possible uses. Formation of CZTS began after 8 minutes in the microwave, but the researchers found they came out most uniform in size after 18 minutes.

Uses for a Microwaved Semiconductor

To make CZTS, salts of the metals are dissolved in a solvent and then heated in a microwave, forming an "ink" containing suspended CZTS nanocrystals. The "ink" then can be painted onto a surface and combined with other coatings to form a solar cell.

"This [CZTS] is the filling that is the heart of solar cells," says Free. "It is the absorber layer - the active layer - of the solar cell."

He says the easy-to-make CZTS photovoltaic semiconductor can be used in more efficient, multilayer solar cell designs. In addition, CZTS has other potential uses, according to Sarswat and Free:

Theromoelectric conversion of heat to electricity, including waste heat from automobiles and industry, or perhaps heat from the ground to power a military camp.

Biosensors, made by painting the nanocrystal "ink" onto a surface and sensitizing the crystals with an organic molecule that allows them to detect small electrical currents that are created when an enzyme in the body becomes active. These biosensors may play a role in future tests to help diagnose cardiovascular disease, diabetes and kidney disease, Sarswat says.

As circuit components in a wide variety of electronics, include devices to convert heat to electricity.

To use solar energy to break down water to produce hydrogen for fuel cells.

The microwave method produced crystals ranging from 3 nanometers to 20 nanometers in size, and the optimum sought by researchers was between 7 nanometers and 12 nanometers, depending on the intended use for the crystals. A nanometer is one-billionth of a meter, or roughly one 25-millionth of an inch.

Larger crystals of CZTS make a good photovoltaic material. Sarswat says the study also demonstrated that smaller crystals of CZTS - those smaller than 5 nanometers - have what is called "quantum confinement," a change in a material's optical and electronic properties when the crystals becomes sufficiently small.

Quantum confinement means the nanocrystals can be "tuned" to emit light of specific, making such material potentially useful for a wide variety of uses, including more efficient LEDs or light-emitting diodes for lighting. Materials with quantum confinement are versatile because they have a "tunable bandgap," an adjustable amount of energy required to activate a material to emit light or electricity.

####

For more information, please click here

Contacts:
Lee J. Siegel

801-581-8993

University of Utah
Communications 201 Presidents Circle, Room 308
Salt Lake City, Utah 84112-9017
801-581-6773
fax: 801-585-3350

Copyright © University of Utah

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Display technology/LEDs/SS Lighting/OLEDs

'Greener,' low-cost transistor heralds advance in flexible electronics September 24th, 2014

Nanotechnology leads to better, cheaper LEDs for phones and lighting September 24th, 2014

Southampton scientists grow a new challenger to graphene September 23rd, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

Nanomedicine

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

Sensors

Graphene and Amaranthus Superparamagnets: Breakthrough nanoparticles discovery of Indian researcher September 23rd, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Discoveries

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Announcements

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Energy

Production of Anticorrosive Chromate Nanocoatings in Iran September 27th, 2014

University of Electro-Communications research: High density quantum dots for powerful solar cells September 25th, 2014

On the Road to Artificial Photosynthesis: Berkeley Lab Study Reveals Key Catalytic Factors in Carbon Dioxide Reduction September 25th, 2014

Solar cell compound probed under pressure September 25th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Graphene and Amaranthus Superparamagnets: Breakthrough nanoparticles discovery of Indian researcher September 23rd, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

NEI Corporation and PneumatiCoat Technologies Sign Agreement to Jointly Develop and Market New Materials for Lithium-ion Batteries September 12th, 2014

Solar/Photovoltaic

University of Electro-Communications research: High density quantum dots for powerful solar cells September 25th, 2014

On the Road to Artificial Photosynthesis: Berkeley Lab Study Reveals Key Catalytic Factors in Carbon Dioxide Reduction September 25th, 2014

Solar cell compound probed under pressure September 25th, 2014

Quick Method Found for Synthesis of Organic Compounds with Less Pollution September 25th, 2014

Quantum nanoscience

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Layered graphene sandwich for next generation electronics September 8th, 2014

Cool Calculations for Cold Atoms: New theory of universal three-body encounters September 2nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE