Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Ubiquitous engineered nanomaterials cause lung inflammation, study finds: Substances are used in everything from paint to sporting equipment

Kent Pinkerton
Kent Pinkerton

Abstract:
A consortium of scientists from across the country has found that breathing ultrafine particles from a large family of materials that increasingly are found in a host of household and commercial products, from sunscreens to the ink in copy machines to super-strong but lightweight sporting equipment, can cause lung inflammation and damage.

Ubiquitous engineered nanomaterials cause lung inflammation, study finds: Substances are used in everything from paint to sporting equipment

Sacramento, CA | Posted on May 6th, 2013

The research on two of the most common types of engineered nanomaterials is published online today in Environmental Health Perspectives, the journal of the National Institute of Environmental Health Sciences (NIEHS). It is the first multi-institutional study examining the health effects of engineering nanomaterials to replicate and compare findings from different labs across the country.

The study is critical, the researchers said, because of the large quantities of nanomaterials being used in industry, electronics and medicine. Earlier studies had found when nanomaterials are taken into the lungs they can cause inflammation and fibrosis. The unique contribution of the current study is that all members of the consortium were able to show similar findings when similiar concentrations of the materials were introduced into the respiratory system. The findings should provide guidance for creating policy for the safe development of nanotechnology.

"This research provides further confirmation that nanomaterials have the potential to cause inflammation and injury to the lungs. Although small amounts of these materials in the lungs do not appear to produce injury, we still must remain vigilant in using care in the diverse applications of these materials in consumer products and foods," said Kent Pinkerton, a study senior author and the director of the UC Davis Center for Health and the Environment."

Used for their ability to confer strength and flexibility because of their tubular and spherical structures, the ubiquitous and highly malleable materials may be composed of everything from carbon to gold. The current study examined the health effects of inhaling two types of nanomaterials, those made from forms of titanium dioxide and those made from multi-walled carbon nanotubes, a substance with a tensile strength 100 times stronger than steel.

The study was conducted as part of the NIEHS NanoGo Consortium, which includes researchers at North Carolina State University, UC Davis, East Carolina University, the Health Effects Laboratory of the National Institute for Occupational Safety and Health, the University of Rochester, the University of Washington and the Center for Environmental Implications of Nanotechnology.

The primary concern for exposure to nanomaterials is by inhalation, although dermal, eye and ingestion exposures also may occur during the manufacture and commercial application of these materials in a wide variety of products. The researchers examined responses of the lungs to nanomaterials made from three forms of titanium dioxide and three forms of multi-walled carbon nanotubes in a mouse model.

###

The study's other authors are James C. Bonner and Alexia J. Taylor of North Carolina State University; Rona M. Silva of UC Davis; Jared M. Brown and Susana C. Hilderbrand of East Carolina University; Vincent Castranova and Dale Porter of the National Institute for Occupational Safety and Health; Alison Elder and Günter Oberdörster of the University of Rochester; Jack R. Harkema and Lori A. Bramble of Michigan State University; and Terrance J. Kavanagh and Dianne Botta of the University of Washington and Andre Nel the California Nanosystems Institute.

The research was funded by NIEHS grants RC2 ES018772 (JCB), RO1 ES019311 (JMB), RC2 ES018741 (AE, GO), R01 ES016189 (TJK), P30 ES007033 (TJK), and RC1 ES018232 (KEP).

####

About University of California - Davis Health System
The UC Davis School of Medicine is among the nation's leading medical schools, recognized for its research and primary-care programs. The school offers fully accredited master's degree programs in public health and in informatics, and its combined M.D.-Ph.D. program is training the next generation of physician-scientists to conduct high-impact research and translate discoveries into better clinical care. Along with being a recognized leader in medical research, the school is committed to serving underserved communities and advancing rural health.

For more information, please click here

Contacts:
Phyllis Brown

916-734-9023

Copyright © University of California - Davis Health System

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Electric-car battery materials could harm key soil bacteria February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Electric-car battery materials could harm key soil bacteria February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Nanotubes/Buckyballs/Fullerenes

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Discoveries

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

Canadian Scientists Develop Innovative Protein Test for Zika February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Announcements

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Environment

Electric-car battery materials could harm key soil bacteria February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

Scientists have put a high precision blood assay into a simple test strip: Researchers have developed a new biosensor test system based on magnetic nanoparticles February 3rd, 2016

Herbal Extracts Applied to Synthesize Titanium Dioxide Nanoparticles January 28th, 2016

Safety-Nanoparticles/Risk management

Electric-car battery materials could harm key soil bacteria February 11th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Are some people more likely to develop adverse reactions to nanoparticle-based medicines? January 31st, 2016

Too-few proteins prompt nanoparticles to clump: Rice scientists: Blood serum proteins must find balance with therapeutic nanoparticles January 29th, 2016

Research partnerships

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic