Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 'Look but don't touch': ICFO researchers present a non-destructive technique for measuring at the atomic scale

Abstract:
Improving our understanding of the human brain, gathering insights into the origin of our universe through the detection of gravitational waves, or optimizing the precision of GPS systems- all are difficult challenges to master because they require the ability to visualize highly fragile elements, which can be terminally damaged by any attempt to observe them. Now, quantum physics has provided a solution. In an article published in Nature Photonics, researchers at the Institute of Photonic Sciences (ICFO) report the observation of a highly fragile and volatile body through a new quantum-mechanical measurement technique.

'Look but don't touch': ICFO researchers present a non-destructive technique for measuring at the atomic scale

Barcelona, Spain | Posted on May 5th, 2013

Researchers from the group led by Morgan Mitchell applied the so-called "quantum non-demolition measurement" to a tiny cloud of atoms. They were able to observe the spinning of the electrons in the atoms, and more importantly, the atom cloud was not disturbed in the process. It is the first time quantum non-demolition measurement has been demonstrated with any material object. The same method could be extended to permit the observation of individual atoms.

In the experiment, scientists prepared light pulses with photons in complementary states, and then sent them through the cloud of atoms, measuring their polarization on the way out. "A first measurement gives us information reflecting the action of the first light pulse. A second measurement, taken with photons in a complementary state from the first, cancels the influence of the preliminary pulse, allowing us to observe the original characteristics of the object," explains Dr. Robert Sewell, researcher at ICFO. This process has enabled the team to gather precise information on the magnetic field of the atom's surroundings.

The information obtained exceeds the so-called "standard quantum limit", which quantifies the maximum amount of information obtainable with any traditional probing. Two achievements made this possible. On one hand, researchers were able to structure the observation so that the noise resulting from the visualization was shifted away from the object being measured and into a different variable. In addition, they introduced quantum statistical correlations among the atoms so that they were able to gather in one measurement what previously they needed a collection of measurements to observe. "This experiment provides rigorous proof of the effectiveness of quantum physics for measuring delicate objects" concludes Sewell.

####

About ICFO-The Institute of Photonic Sciences
ICFO-The Institute of Photonic Sciences conducts research targeting the forefront of the science and technology of light, with programs directed at applications in Health, Renewable Energies, Information Technologies, Security and Industrial processes, among others. The center hosts 250 researchers working in 60 different laboratories. All research groups and facilities are located in a dedicated 14.000 m2 building situated in the Mediterranean Technology Park in the metropolitan area of Barcelona.

For more information, please click here

Contacts:
Albert Mundet

34-935-542-246

Copyright © ICFO-The Institute of Photonic Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Physics

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties December 30th, 2016

Imaging

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Discoveries

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Announcements

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Quantum nanoscience

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Quantum simulation technique yields topological soliton state in SSH model January 3rd, 2017

Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties December 30th, 2016

Two electrons go on a quantum walk and end up in a qudit: Russian scientists find a way to reliably connect quantum elements December 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project