Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Shaking things up: NIST researchers propose new old way to purify carbon nanotubes

Shown are three examples of partitioning carbon nanotubes in liquid phases. Left: nanotubes partitioned by diameter. Smaller diameters, on the bottom, appear purple. Center: partitioned between semiconductors (amber, top) and metals. Right: A sample with different diameter range partitioned between metals (yellow) and semiconductors. Color differences are due to differences in electronic structure.

Credit: Michael Baum, NIST
Shown are three examples of partitioning carbon nanotubes in liquid phases. Left: nanotubes partitioned by diameter. Smaller diameters, on the bottom, appear purple. Center: partitioned between semiconductors (amber, top) and metals. Right: A sample with different diameter range partitioned between metals (yellow) and semiconductors. Color differences are due to differences in electronic structure.

Credit: Michael Baum, NIST

Abstract:
An old, somewhat passé, trick used to purify protein samples based on their affinity for water has found new fans at the National Institute of Standards and Technology (NIST), where materials scientists are using it to divvy up solutions of carbon nanotubes, separating the metallic nanotubes from semiconductors. They say it's a fast, easy and cheap way to produce high-purity samples of carbon nanotubes for use in nanoscale electronics and many other applications.*

Shaking things up: NIST researchers propose new old way to purify carbon nanotubes

Gaithersburg, MD | Posted on May 1st, 2013

Carbon nanotubes are formed from rolled-up sheets of carbon atoms arranged in a hexagonal pattern resembling chicken wire. One of the amazing features of nanotubes is that, depending on just how the sheet rolls up, a quality called chirality, the resulting tube can behave either like a semiconductor, with various properties, or like a metal, with electrical conductance up to 10 times better than copper. One big issue in creating commercially viable electronics based on nanotubes is being able to efficiently sort out the kind you want.

Thinking about how to do this, says NIST researcher Constantine Khripin, brought up the subject of biochemists and so-called "two-phase liquid extraction." "Biologists used this to separate proteins, even viruses," says Khripin, "It's an old technique, it was popular in the 70s, but then HPLC [high-performance liquid chromatography] replaced a lot of those techniques." People use HPLC to partition carbon nanotubes as well, he says, but it's less successful. HPLC divides things by exploiting differences in the mobility of the desired molecules as they travel small columns loaded with tiny spheres, but carbon nanotubes tend to stick to the spheres, reducing yield and eventually clogging the equipment.

The concept of liquid extraction is relatively straightforward. You make a mixture in water of two polymers that you've selected to be just slightly different in their "hydrophobicity," or tendency to mix with water. Add in your sample of stuff to be separated, stir vigorously and wait. The polymer solutions will gradually separate into two distinct portions or "phases," the lighter one on top. And they'll bring along with them those molecules in your sample that share a similar degree of hydrophobicity.

It turns out that this works pretty well with nanotubes because of differences in their electronic structure—the semiconductor forms, for example, are more hydrophobic than the metallic forms. It's not perfect, of course, but a few sequential separations ends up with a sample where the undesired forms are essentially undetectable.

Be honest. It's not that easy. "No," agrees, Khripin, "People tried this before and it didn't work. The breakthrough was to realize that you need a very subtle difference between the two phases. The difference in hydrophobity between nanotubes is tiny, tiny, tiny." But you can engineer that with careful addition of salts and surfactants.

"This technique uses some vials and a bench-top centrifuge worth a couple hundred dollars, and it takes under a minute," observes team member Jeffrey Fagan. "The other techniques people use require an HPLC on the order of $50,000 and the yields are relatively low, or an ultracentrifuge that takes 12 to 20 hours to separate out the different metals from semiconductors, and it's tricky and cumbersome."

"The nanotube metrology project at NIST has been around for a quite a number of years," says senior team member Ming Zheng. "It has been a constant interest of ours to develop new ways to separate nanotubes, cheaper ways, that industry can use in the development of nanoelectronics and other applications. We really think we have a method here that fits all the criteria that people are looking for. It's easy, it's scalable, it's high resolution—all the good attributes put together."

* C.Y. Khripin , J.A. Fagan and M. Zheng. Spontaneous partition of carbon nanotubes in polymer-modified aqueous phases. J. Am. Chem. Soc., Article ASAP April 22, 2013 (web publication). DOI: 10.1021/ja402762e

####

For more information, please click here

Contacts:
Michael Baum

301-975-2763

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

MIG Takes a Roll-Up-Your-Sleeves Approach with Revamped MEMS/Sensors Technical Event -- MIG welcomes technologists to MEMS Technical Congress, emphasizes working groups and breakout sessions on emerging MEMS & sensors, tech transfer and integration March 6th, 2015

Phenom-World announces the Phenom XL, world’s fastest desktop SEM to handle large samples March 6th, 2015

Air Bearing Stage / Systems Introduced by PI at Photonics West March 6th, 2015

Consistent Scalable Functionalised Graphene Capacity March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

Laboratories

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

New research could lead to more efficient electrical energy storage March 4th, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Govt.-Legislation/Regulation/Funding/Policy

New research could lead to more efficient electrical energy storage March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Nanotubes/Buckyballs

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

Discoveries

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

Strength in numbers: Researchers develop the first-ever quantum device that detects and corrects its own errors March 4th, 2015

New research could lead to more efficient electrical energy storage March 4th, 2015

Announcements

MIG Takes a Roll-Up-Your-Sleeves Approach with Revamped MEMS/Sensors Technical Event -- MIG welcomes technologists to MEMS Technical Congress, emphasizes working groups and breakout sessions on emerging MEMS & sensors, tech transfer and integration March 6th, 2015

Phenom-World announces the Phenom XL, world’s fastest desktop SEM to handle large samples March 6th, 2015

Air Bearing Stage / Systems Introduced by PI at Photonics West March 6th, 2015

Get ready for NanoDays! March 5th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Strength in numbers: Researchers develop the first-ever quantum device that detects and corrects its own errors March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE