Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Use of laser light yields versatile manipulation of a quantum bit

This is an artist's rendering of all-optical control of an individual electronic spin within a diamond. This spin is associated with a naturally occurring defect in diamond known as the nitrogen-vacancy center, a promising quantum bit (qubit) for quantum information processing. In their recently published paper, Yale et al. develop techniques to initialize, manipulate, and read out the electronic spin of this qubit using only pulses of light.

Credit: Peter Allen
This is an artist's rendering of all-optical control of an individual electronic spin within a diamond. This spin is associated with a naturally occurring defect in diamond known as the nitrogen-vacancy center, a promising quantum bit (qubit) for quantum information processing. In their recently published paper, Yale et al. develop techniques to initialize, manipulate, and read out the electronic spin of this qubit using only pulses of light.

Credit: Peter Allen

Abstract:
By using light, researchers at UC Santa Barbara have manipulated the quantum state of a single atomic-sized defect in diamond -- the nitrogen-vacancy center -- in a method that not only allows for more unified control than conventional processes, but is more versatile, and opens up the possibility of exploring new solid-state quantum systems. Their results are published in the latest edition of the Proceedings of the National Academy of the Sciences.

Use of laser light yields versatile manipulation of a quantum bit

Santa Barbara, CA | Posted on May 1st, 2013

"In contrast to conventional electronics, we developed an all-optical scheme for controlling individual quantum bits in semiconductors using pulses of light," said David Awschalom, director of UCSB's Center for Spintronics & Quantum Computation, professor of physics and of electrical and computer engineering, and the Peter J. Clarke director of the California NanoSystems Institute. "This finding offers an intriguing opportunity for processing and communicating quantum information with photonic chips."

The nitrogen-vacancy (NV) center is a defect in the atomic structure of a diamond where one carbon atom in the diamond lattice is replaced by a nitrogen atom, and an adjacent site in the lattice is vacant. The resulting electronic spin around the defect forms a quantum bit -- "qubit" -- which is the basic unit of a quantum computer. Current processes require this qubit be initialized into a well-defined energy state before interfacing with it. Unlike classical computers, where the basic unit of information, the bit, is either 0 or 1, qubits can be 0, 1, or any mathematical superposition of both, allowing for more complex operations.

"The initial problem we were trying to solve was to figure out a way that we could place our qubit into any possible superposition of its state in a single step," said the paper's first author, physics graduate student Christopher Yale. "It turns out that in addition to being able to do that just by adjusting the laser light interacting with our spin, we discovered that we could generate coherent rotations of that spin state and read out its state relative to any other state of our choosing using only optical processes."

The all-optical control allows for greater versatility in manipulating the NV center over disparate conventional methods that use microwave fields and exploit defect-specific properties. While the NV center in diamond is a promising qubit that has been studied extensively for the past decade, diamonds are challenging to engineer and grow. This all-optical methodology, say the researchers, may allow for the exploration of quantum systems in other materials that are more technologically mature. "Compared to how the NV center is usually studied, these techniques in some ways are more general and could potentially enable the study of unexplored quantum systems," said UCSB physics graduate student Bob Buckley.

Additionally, the all-optical method also has the potential to be more scalable, noted physics graduate student David Christle. "If you have an array of these qubits in order, and if you're applying conventional microwave fields, it becomes difficult to talk to one of them without talking to the others. In principle, with our technique in an idealized optical system, you would be able focus the light down onto a single qubit and only talk to it."

While practical quantum computers are still years and years away, the research opens up new paths toward their eventual creation. According to the group, these devices would be capable of performing certain sophisticated calculations and functions far more efficiently than today's computers can -- leading to advances in fields as diverse as encryption and quantum simulation.

UCSB electrical and computer engineering graduate student F. Joseph Heremans and postdoctoral researcher Lee Bassett also contributed to this study. Additional theoretical work and insight was provided by Guido Burkard, professor of physics at the University of Konstanz, Germany.

####

For more information, please click here

Contacts:
Sonia Fernandez

805-893-4765

Copyright © University of California - Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Visit to access the full paper:

Related News Press

News and information

High-speed FM-AFM and simulation reveal atomistic dissolution processes of calcite in water July 28th, 2017

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

Triple-layer catalyst does double duty: Rice, University of Houston produce robust catalyst to split water into hydrogen, oxygen July 28th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Third Quarter Results July 27th, 2017

Physics

The first light atomic nucleus with a second face July 20th, 2017

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

In atomic propellers, quantum phenomena can mimic everyday physics June 1st, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Chip Technology

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Living computers: RNA circuits transform cells into nanodevices July 27th, 2017

Quantum Computing

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

Into the quantum world with a tennis racket: Classical mechanics helps control quantum computers July 6th, 2017

Microsoft, Purdue collaborate to advance quantum computing May 30th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Optical computing/Photonic computing

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

A firefly's flash inspires new nanolaser light July 18th, 2017

Giant enhancement of electromagnetic waves revealed within small dielectric particles: Scientists have done for the first time direct measurements of giant electromagnetic fields July 8th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Discoveries

High-speed FM-AFM and simulation reveal atomistic dissolution processes of calcite in water July 28th, 2017

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

Triple-layer catalyst does double duty: Rice, University of Houston produce robust catalyst to split water into hydrogen, oxygen July 28th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Announcements

High-speed FM-AFM and simulation reveal atomistic dissolution processes of calcite in water July 28th, 2017

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

Triple-layer catalyst does double duty: Rice, University of Houston produce robust catalyst to split water into hydrogen, oxygen July 28th, 2017

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

High-speed FM-AFM and simulation reveal atomistic dissolution processes of calcite in water July 28th, 2017

Triple-layer catalyst does double duty: Rice, University of Houston produce robust catalyst to split water into hydrogen, oxygen July 28th, 2017

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Photonics/Optics/Lasers

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Research partnerships

High-speed FM-AFM and simulation reveal atomistic dissolution processes of calcite in water July 28th, 2017

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

Triple-layer catalyst does double duty: Rice, University of Houston produce robust catalyst to split water into hydrogen, oxygen July 28th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project