Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Use of laser light yields versatile manipulation of a quantum bit

This is an artist's rendering of all-optical control of an individual electronic spin within a diamond. This spin is associated with a naturally occurring defect in diamond known as the nitrogen-vacancy center, a promising quantum bit (qubit) for quantum information processing. In their recently published paper, Yale et al. develop techniques to initialize, manipulate, and read out the electronic spin of this qubit using only pulses of light.

Credit: Peter Allen
This is an artist's rendering of all-optical control of an individual electronic spin within a diamond. This spin is associated with a naturally occurring defect in diamond known as the nitrogen-vacancy center, a promising quantum bit (qubit) for quantum information processing. In their recently published paper, Yale et al. develop techniques to initialize, manipulate, and read out the electronic spin of this qubit using only pulses of light.

Credit: Peter Allen

Abstract:
By using light, researchers at UC Santa Barbara have manipulated the quantum state of a single atomic-sized defect in diamond -- the nitrogen-vacancy center -- in a method that not only allows for more unified control than conventional processes, but is more versatile, and opens up the possibility of exploring new solid-state quantum systems. Their results are published in the latest edition of the Proceedings of the National Academy of the Sciences.

Use of laser light yields versatile manipulation of a quantum bit

Santa Barbara, CA | Posted on May 1st, 2013

"In contrast to conventional electronics, we developed an all-optical scheme for controlling individual quantum bits in semiconductors using pulses of light," said David Awschalom, director of UCSB's Center for Spintronics & Quantum Computation, professor of physics and of electrical and computer engineering, and the Peter J. Clarke director of the California NanoSystems Institute. "This finding offers an intriguing opportunity for processing and communicating quantum information with photonic chips."

The nitrogen-vacancy (NV) center is a defect in the atomic structure of a diamond where one carbon atom in the diamond lattice is replaced by a nitrogen atom, and an adjacent site in the lattice is vacant. The resulting electronic spin around the defect forms a quantum bit -- "qubit" -- which is the basic unit of a quantum computer. Current processes require this qubit be initialized into a well-defined energy state before interfacing with it. Unlike classical computers, where the basic unit of information, the bit, is either 0 or 1, qubits can be 0, 1, or any mathematical superposition of both, allowing for more complex operations.

"The initial problem we were trying to solve was to figure out a way that we could place our qubit into any possible superposition of its state in a single step," said the paper's first author, physics graduate student Christopher Yale. "It turns out that in addition to being able to do that just by adjusting the laser light interacting with our spin, we discovered that we could generate coherent rotations of that spin state and read out its state relative to any other state of our choosing using only optical processes."

The all-optical control allows for greater versatility in manipulating the NV center over disparate conventional methods that use microwave fields and exploit defect-specific properties. While the NV center in diamond is a promising qubit that has been studied extensively for the past decade, diamonds are challenging to engineer and grow. This all-optical methodology, say the researchers, may allow for the exploration of quantum systems in other materials that are more technologically mature. "Compared to how the NV center is usually studied, these techniques in some ways are more general and could potentially enable the study of unexplored quantum systems," said UCSB physics graduate student Bob Buckley.

Additionally, the all-optical method also has the potential to be more scalable, noted physics graduate student David Christle. "If you have an array of these qubits in order, and if you're applying conventional microwave fields, it becomes difficult to talk to one of them without talking to the others. In principle, with our technique in an idealized optical system, you would be able focus the light down onto a single qubit and only talk to it."

While practical quantum computers are still years and years away, the research opens up new paths toward their eventual creation. According to the group, these devices would be capable of performing certain sophisticated calculations and functions far more efficiently than today's computers can -- leading to advances in fields as diverse as encryption and quantum simulation.

UCSB electrical and computer engineering graduate student F. Joseph Heremans and postdoctoral researcher Lee Bassett also contributed to this study. Additional theoretical work and insight was provided by Guido Burkard, professor of physics at the University of Konstanz, Germany.

####

For more information, please click here

Contacts:
Sonia Fernandez

805-893-4765

Copyright © University of California - Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Visit to access the full paper:

Related News Press

News and information

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Physics

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Chip Technology

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Quantum Computing

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

Squeezed quantum cats May 28th, 2015

Advance in quantum error correction: Protocol corrects virtually all errors in quantum memory, but requires little measure of quantum states May 27th, 2015

Researchers discover 'swing-dancing' pairs of electrons: Findings set the stage for room-temperature superconductivity and the transformation of high-speed rail, quantum computers May 14th, 2015

Optical computing/ Photonic computing

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Computing at the speed of light: Utah engineers take big step toward much faster computers May 18th, 2015

Electrons corralled using new quantum tool: 'Whispering gallery' effect confines electrons, could provide basis for new electron-optics devices May 7th, 2015

Discoveries

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Announcements

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Global Carbon Nanotubes (CNT) Market Expected To Reach USD 3.42 Billion By 2022 May 29th, 2015

Photonics/Optics/Lasers

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

Research partnerships

Linking superconductivity and structure May 28th, 2015

How spacetime is built by quantum entanglement: New insight into unification of general relativity and quantum mechanics May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project