Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Use of laser light yields versatile manipulation of a quantum bit

This is an artist's rendering of all-optical control of an individual electronic spin within a diamond. This spin is associated with a naturally occurring defect in diamond known as the nitrogen-vacancy center, a promising quantum bit (qubit) for quantum information processing. In their recently published paper, Yale et al. develop techniques to initialize, manipulate, and read out the electronic spin of this qubit using only pulses of light.

Credit: Peter Allen
This is an artist's rendering of all-optical control of an individual electronic spin within a diamond. This spin is associated with a naturally occurring defect in diamond known as the nitrogen-vacancy center, a promising quantum bit (qubit) for quantum information processing. In their recently published paper, Yale et al. develop techniques to initialize, manipulate, and read out the electronic spin of this qubit using only pulses of light.

Credit: Peter Allen

Abstract:
By using light, researchers at UC Santa Barbara have manipulated the quantum state of a single atomic-sized defect in diamond -- the nitrogen-vacancy center -- in a method that not only allows for more unified control than conventional processes, but is more versatile, and opens up the possibility of exploring new solid-state quantum systems. Their results are published in the latest edition of the Proceedings of the National Academy of the Sciences.

Use of laser light yields versatile manipulation of a quantum bit

Santa Barbara, CA | Posted on May 1st, 2013

"In contrast to conventional electronics, we developed an all-optical scheme for controlling individual quantum bits in semiconductors using pulses of light," said David Awschalom, director of UCSB's Center for Spintronics & Quantum Computation, professor of physics and of electrical and computer engineering, and the Peter J. Clarke director of the California NanoSystems Institute. "This finding offers an intriguing opportunity for processing and communicating quantum information with photonic chips."

The nitrogen-vacancy (NV) center is a defect in the atomic structure of a diamond where one carbon atom in the diamond lattice is replaced by a nitrogen atom, and an adjacent site in the lattice is vacant. The resulting electronic spin around the defect forms a quantum bit -- "qubit" -- which is the basic unit of a quantum computer. Current processes require this qubit be initialized into a well-defined energy state before interfacing with it. Unlike classical computers, where the basic unit of information, the bit, is either 0 or 1, qubits can be 0, 1, or any mathematical superposition of both, allowing for more complex operations.

"The initial problem we were trying to solve was to figure out a way that we could place our qubit into any possible superposition of its state in a single step," said the paper's first author, physics graduate student Christopher Yale. "It turns out that in addition to being able to do that just by adjusting the laser light interacting with our spin, we discovered that we could generate coherent rotations of that spin state and read out its state relative to any other state of our choosing using only optical processes."

The all-optical control allows for greater versatility in manipulating the NV center over disparate conventional methods that use microwave fields and exploit defect-specific properties. While the NV center in diamond is a promising qubit that has been studied extensively for the past decade, diamonds are challenging to engineer and grow. This all-optical methodology, say the researchers, may allow for the exploration of quantum systems in other materials that are more technologically mature. "Compared to how the NV center is usually studied, these techniques in some ways are more general and could potentially enable the study of unexplored quantum systems," said UCSB physics graduate student Bob Buckley.

Additionally, the all-optical method also has the potential to be more scalable, noted physics graduate student David Christle. "If you have an array of these qubits in order, and if you're applying conventional microwave fields, it becomes difficult to talk to one of them without talking to the others. In principle, with our technique in an idealized optical system, you would be able focus the light down onto a single qubit and only talk to it."

While practical quantum computers are still years and years away, the research opens up new paths toward their eventual creation. According to the group, these devices would be capable of performing certain sophisticated calculations and functions far more efficiently than today's computers can -- leading to advances in fields as diverse as encryption and quantum simulation.

UCSB electrical and computer engineering graduate student F. Joseph Heremans and postdoctoral researcher Lee Bassett also contributed to this study. Additional theoretical work and insight was provided by Guido Burkard, professor of physics at the University of Konstanz, Germany.

####

For more information, please click here

Contacts:
Sonia Fernandez

805-893-4765

Copyright © University of California - Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Visit to access the full paper:

Related News Press

News and information

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Physics

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Chip Technology

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Quantum Computing

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

An Archimedes' screw for groups of quantum particles November 19th, 2016

Optical computing/Photonic computing

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

Discoveries

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Announcements

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Photonics/Optics/Lasers

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Controlled electron pulses November 30th, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Research partnerships

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project