Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > End of the Road for Roadrunner: Once the World’s Fastest Supercomputer; Central to the Success of Stockpile Stewardship

Abstract:
Roadrunner, the first supercomputer to break the once-elusive petaflop barrier—one million billion calculations per second—will be decommissioned on Sunday, March 31.

End of the Road for Roadrunner: Once the World’s Fastest Supercomputer; Central to the Success of Stockpile Stewardship

Los Alamos, NM | Posted on March 29th, 2013

During its five operational years, Roadrunner, part of the National Nuclear Security Administration's Advanced Simulation and Computing (ASC) program to provide key computer simulations for the Stockpile Stewardship Program, was a workhorse system providing computing power for stewardship of the U.S. nuclear deterrent, and in its early shakedown phase, a wide variety of unclassified science. The IBM system achieved petaflop speed in 2008, shortly after installation at Los Alamos National Laboratory.

"Roadrunner exemplified stockpile stewardship: an excellent team integrating complex codes with advanced computing architectures to ensure a safe, secure and effective deterrent," said Chris Deeney, NNSA Assistant Deputy Administrator for Stockpile Stewardship. "Roadrunner and its successes have positioned us well to weather the technology changes on the HPC horizon as we implement stockpile modernization without recourse to underground testing."

Roadrunner's design was unique, and controversial. It combined two different kinds of processors, making it a "hybrid." It had 6,563 dual-core general-purpose processors (AMD Opterons™), with each core linked to a special graphics processor (PowerXCell 8i) called a "Cell." The Cell was an enhanced version of a specialized processor originally designed for the Sony Playstation 3®, adapted specifically to support scientific computing.

Although other hybrid computers existed, none were at the supercomputing scale. Many doubted that a hybrid supercomputer could work, so for Los Alamos and IBM, Roadrunner was a leap of faith.

High-speed calculation was the primary goal. When a computer is fast enough to improve simulation detail and fidelity, with reasonable turnaround time, the resulting simulations deepen a scientists' understanding of the phenomena they're studying. As part of its Stockpile Stewardship work, Roadrunner took on a difficult, long-standing gap in understanding of energy flow in a weapon and its relation to weapon yield. Roadrunner made a significant contribution to that understanding.

In the area of general science, while Roadrunner provided a platform to study a wide variety of scientific unknowns at an unprecedented scale while in unclassified shakedown mode. Research included nanowire material behavior, magnetic reconnection, laser backscatter, HIV phylogenetics, and a simulation of the universe at a 70-billion-particle scale.

"Roadrunner was a truly pioneering idea," said Gary Grider of the Laboratory's High Performance Computing Division. "Roadrunner got everyone thinking in new ways about how to build and use a supercomputer. Specialized processors are being included in new ways on new systems, and being used in novel ways. Our demonstration with Roadrunner caused everyone to pay attention."

Roadrunner's speed was derived from its architecture. Its two processors shared functions, with the Cell taking on the most computationally intense parts of a calculation—thus acting as a computational accelerator. This improved the simulations and made great strides in energy efficiency by linking its general-purpose processors to specialized ones.

"What Roadrunner did was exactly what it was intended to do: get the weapons codes moving toward new architectures," said Cheryl Wampler of the Weapons Physics directorate. "Roadrunner was challenging because the supercomputing future was challenging."

Future supercomputers will need to improve on Roadrunner's energy efficiency to make the power bill affordable. Future supercomputers will also need new solutions for handling and storing the vast amounts of data involved in such massive calculations.

It's estimated that sometime between 2020 and 2030 supercomputers will reach the exascale—one quintillion calculations per second— or one thousand times faster than Roadrunner. Such speed bodes well for the needs of U.S. weapons laboratories, and for the advancement of science.

Without ceremony, this weekend the World's Fastest Supercomputer from 2008 will be switched off. But it will not be forgotten. Advancements made possible by Roadrunner have informed current computing architectures and will help shape future designs.

"Even in death," said Grider, "we are trying to learn from Roadrunner."

After the machine is shut off but before it is dismantled, researchers will have a about one month to do experiments on operating system memory compression techniques for an ASC relevant application, and optimized data routing to help guide the design of future capacity cluster computers.

"These are things we never could try while Roadrunner was running production problems," Grider added.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
Kevin Roark

(505) 665-9202/(505) 699-5397

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Advance in quantum error correction: Protocol corrects virtually all errors in quantum memory, but requires little measure of quantum states May 27th, 2015

Laboratories

Collaboration could lead to biodegradable computer chips May 28th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Collaboration could lead to biodegradable computer chips May 28th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

Nanoelectronics

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Announcements

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project