Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Rice's Laura Segatori wins NSF CAREER award: Engineering researcher creating new tools to study Parkinson's disease

Laura Segatori
CREDIT: Jeff Fitlow/Rice University
Laura Segatori

CREDIT: Jeff Fitlow/Rice University

Abstract:
Some human cells forget to empty their trash bins, and when the garbage piles up, it can lead to Parkinson's disease and other genetic and age-related disorders. Scientists don't yet understand why this happens, and Rice University engineering researcher Laura Segatori is hoping to change that, thanks to a prestigious five-year CAREER Award from the National Science Foundation (NSF).

Rice's Laura Segatori wins NSF CAREER award: Engineering researcher creating new tools to study Parkinson's disease

Houston, TX | Posted on March 28th, 2013

CAREER Awards support the research and educational development of young scholars that the NSF expects to become leaders in their field. The grants are usually worth about $400,000 and are among the most competitive awards from NSF, which awards only about 400 each year across all disciplines.

Segatori, Rice's T.N. Law Assistant Professor of Chemical and Biomolecular Engineering and assistant professor of bioengineering and of biochemistry and cell biology, will use her CAREER grant to create a toolkit for probing the workings of the cellular processes that lead to accumulation of waste material and development of diseases, such as Parkinson's and lysosomal storage disorders. Each tool in the kit will be a nanoparticle -- a speck of matter about the size of a virus -- with a specific shape, size and charge. By tailoring each of these properties, Segatori's team will create a series of specialized probes that can undercover the workings of a cellular process called autophagy.

"We've done a lot of studies on the biology of this process, and we work with some people at Baylor College of Medicine who are experts in this area and who have animal models of these diseases," Segatori said. "What we are asking now is, What are the design rules to make nanoparticles that will activate this pathway?"

Autophagy is the main process by which damaged or toxic materials are broken down within cells. First, the cell recognizes that something is trash and earmarks it for disposal by bagging it in a thin sac, or membrane. These bags of trash are called "autophagosomes," and in the second step of the process, an organelle called the "lysosome" collects the bags and empties their contents into a chamber, where they are broken down and recycled.

"In some diseases, autophagosomes form to compartmentalize the material, but they are never cleared by the lysosomes, so the autophagosomes accumulate," Segatori said. "In Parkinson's, for instance, neuronal cells simply cannot keep up with the amount of autophagosomes that contain the misfolded amyloid proteins associated with the disease.

"But we also know that some nanoparticles can inactivate the lysosome function because of the charge on their surface," she said. "For instance, studies have shown that autophagosomes form to compartmentalize gold nanoparticles. At first glance, it might appear that autophagy is taking place because one can observe many autophagosomes in the cell. But in reality, the autophagosomes containing the nanoparticles are never cleared out by the lysosome. So they accumulate in much the same way that the amyloids accumulate in Parkinson's."

In previous research, Segatori studied a protein that acts as a trigger for both halves of the autophagic process. The protein -- transcription factor EB (TFEB) -- must be present for trash to be both collected and degraded via autophagy. Segatori and her team also found that TFEB plays an important role in rescuing misfolding and aggregation proteins. In the CAREER research program, Segatori will examine how cells respond to more than a dozen nanoparticles. By gauging the cell's autophagic reaction to particles of specific size and charge, she hopes to identify other key proteins like TFEB and also learn how to regulate them.

"The idea, essentially, is to figure out the design 'rules' that we must follow to make nanoparticles that enhance this clearance machinery," she said. "We want to understand the characteristics of a nanoparticle that might activate part of the process but then impair it somewhere along the line, such as gold nanoparticles do.

"Eventually, once we understand how to design a nanoparticle to activate autophagy, we will use it as a tool to learn more about the autophagic process itself because there are still many question marks in biology regarding how this pathway works," Segatori said. "It's not completely clear how it is regulated. It seems that excessive autophagy may activate cell death, but it's not yet clear. In short, we are looking for more than therapeutic applications. We are also hoping to use these nanoparticles as tools to study the basic science of autophagy."

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to tinyurl.com/AboutRiceU.

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A copy of the NSF grant abstract is available at:

Related News Press

News and information

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Arrowhead Presents New Clinical Data Demonstrating a Sustained Host Response in Hepatitis B Patients Following RNAi Therapy — Up to 5.0 log10 reduction in HBsAg observed; data presented at HEP DART 2017 — December 6th, 2017

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

Academic/Education

Luleĺ University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Nanomedicine

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Arrowhead Presents New Clinical Data Demonstrating a Sustained Host Response in Hepatitis B Patients Following RNAi Therapy — Up to 5.0 log10 reduction in HBsAg observed; data presented at HEP DART 2017 — December 6th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

Announcements

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

Fast flowing heat in graphene heterostructures: Surprisingly fast heat flow from graphene to its surrounding November 29th, 2017

Tiny robots step closer to treating hard-to-reach parts of the body November 25th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project