Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Anasys report on the Lorentz Contact Resonance imaging mode now available for their afm+ and nanoIR systems

Schematic to illustrate Lorentz Contact Resonance imaging
Schematic to illustrate Lorentz Contact Resonance imaging

Abstract:
Anasys Instruments continues to expand the capabilities of their nanoscale materials characterization techniques with the Lorentz Contact Resonance (LCR) imaging mode. This is now available for their afm+® and nanoIR™ systems.

Anasys report on the Lorentz Contact Resonance imaging mode now available for their afm+ and nanoIR systems

Santa Barbara, CA | Posted on March 26th, 2013

The Lorentz Contact Resonance imaging mode further enhances the capabilities of the afm+ and nanoIR systems from Anasys. LCR allows rapid broadband nanomechanical measurements over a range of temperatures. LCR imaging differentiates between multiple components of a sample and allows precise location of the probe for subsequent chemical or thermal analysis with nanoscale resolution.

LCR provides both nanomechanical spectroscopy and compositional mapping on the highest levels of resolution. For example, analysis of wideband contact resonance spectra may readily differentiate different domains in polymer blends while the high resolution image maps provide insight to materials components in heterogeneous polymer blends.

The technique is based upon the Anasys proprietary Thermalever™ probes. LCR works by using a pole piece to focus a magnetic field onto the end of the probe. An oscillating current is then passed through the probe. The interaction between the magnetic field and the electric field causes a perpendicular force in the cantilever resulting in an oscillating behavior of the cantilever. Driving the tip in this fashion, instead of with a piezoelectric crystal, provides many advantages, including no moving parts in the drive system leading to clean cantilever resonance spectra with no parasitic peaks. Then, using the Anasys Analysis Studio software, a wide range of frequency sweeps are made (from 1 kHz to 4 MHz). By placing the Thermalever probe on the surface of a sample and sweeping the entire frequency range, we can obtain mechanical spectra of the surface. Materials with different stiffness will display different amplitudes or shifted peaks at the resonant frequencies of the cantilever.

This work has been recently published in the journal, Nanotechnology. The reference is Lee, B.; Prater, C. B.; King, W. P. Nanotechnology 2012, 23, 055709.

####

About Anasys Instruments
Anasys Instruments is dedicated to delivering innovative products that measure material properties for samples with spatially varying physical and chemical properties at the nanoscale. Anasys introduced the nano-TA in 2006 which pioneered the field of nanoscale thermal property measurement. In 2010, Anasys introduced the award-winning breakthrough nanoIR™ Platform which pioneered the field of nanoscale IR measurement. Most recently, Anasys is proud to introduce the breakthrough Lorentz Force Contact Resonance, which pioneers the field of wideband nanomechanical spectroscopy.

For more information, please click here

Contacts:
Anasys contact:
Roshan Shetty
Anasys Instruments Corporation
121 Gray Avenue, Suite 100
Santa Barbara
CA 93101 USA
Tel: +1 (805) 730-3310
www.anasysinstruments.com


Media contact:
Jezz Leckenby
Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA, UK
Tel +44 (0) 1799 521881
Mob +44 (0) 7843 012997
www.talking-science.com

Copyright © Anasys Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Imaging

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Announcements

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Tools

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Ultra-Low Frequency Vibration Isolation Stabilizes Scanning Tunneling Microscopy at UCLA’s Nano-Research Group August 28th, 2014

Measure Both Elastic and Viscous Properties with AFM Using Asylum Research’s Exclusive AM-FM Viscoelastic Mapping Mode August 28th, 2014

Malvern specialists to deliver inaugural short course on polymer characterization at Interplas 2014 August 27th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE