Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Computer Simulations Yield Clues to How Cells Interact With Surroundings: Berkeley Lab research has implications for cancer, atherosclerosis research

Computer models offer a new look at the molecular machinery that enables cells to interact with their environment. This schematic shows two integrin components (red and blue) protruding from a cell membrane.Credit: Mofrad lab
Computer models offer a new look at the molecular machinery that enables cells to interact with their environment. This schematic shows two integrin components (red and blue) protruding from a cell membrane.

Credit: Mofrad lab

Abstract:
Your cells are social butterflies. They constantly interact with their surroundings, taking in cues on when to divide and where to anchor themselves, among other critical tasks.

This networking is driven in part by proteins called integrin, which reside in a cell's outer plasma membrane. Their job is to convert mechanical forces from outside the cell into internal chemical signals that tell the cell what to do. That is, when they work properly. When they misfire, integrins can cause diseases such as atherosclerosis and several types of cancer.

Computer Simulations Yield Clues to How Cells Interact With Surroundings: Berkeley Lab research has implications for cancer, atherosclerosis research

Berkeley, CA | Posted on March 25th, 2013

Despite their importance—good and bad—scientists don't exactly know how integrins work. That's because it's very difficult to experimentally observe the protein's molecular machinery in action. Scientists have yet to obtain the entire crystal structure of integrin within the plasma membrane, which is a go-to way to study a protein's function. Roadblocks like this have ensured that integrins remain a puzzle despite years of research.

But what if there was another way to study integrin? One that doesn't rely on experimental methods? Now there is, thanks to a computer model of integrin developed by Berkeley Lab researchers. Like its biological counterpart, the virtual integrin snippet is about twenty nanometers long. It also responds to changes in energy and other stimuli just as integrins do in real life. The result is a new way to explore how the protein connects a cell's inner and outer environments.

"We can now run computer simulations that reveal how integrins in the plasma membrane translate external mechanical cues to chemical signals within the cell," says Mohammad Mofrad, a faculty scientist in Berkeley Lab's Physical Biosciences Division and associate professor of Bioengineering and Mechanical Engineering at UC Berkeley. He conducted the research with his graduate student Mehrdad Mehrbod.

They report their research in a recent issue of PLoS Computational Biology.

Their "molecular dynamics" model is the latest example of computational biology, in which scientists use computers to analyze biological phenomena for insights that may not be available via experiment. As you'd expect from a model that accounts for the activities of half a million atoms at once, the integrin model takes a lot of computing horsepower to pull off. Some of its simulations require 48 hours of run time on 600 parallel processors at the U.S. Department of Energy's (DOE) National Energy Research Scientific Computing Center (NERSC), which is located at Berkeley Lab.

The model is already shedding light on what makes integrin tick, such as how they "know" to respond to more force with greater numbers. When activated by an external force, integrins cluster together on a cell's surface and join other proteins to form structures called focal adhesions. These adhesions recruit more integrins when they're subjected to higher forces. As the model indicates, this ability to pull in more integrins on demand may be due to the fact that a subunit of integrin is connected to actin filaments, which form a cell's skeleton.

"We found that if actin filaments sustain more forces, they automatically bring more integrins together, forming a larger cluster," says Mehrbod.

The model may also help answer a longstanding question: Do integrins interact with each other immediately after they're activated? Or do they not interact with each other at all, even as they cluster together?

To find out, the scientists ran simulations that explored whether it's physically possible for integrins to interact when they're embedded in the plasma membrane. They found that interactions are likely to occur only between one compartment of integrin called the β-subunit.

They also discovered an interesting pattern in which integrins fluctuate. Two integrin sections, one that spans the cell membrane and one that protrudes from the cell, are connected by a hinge-like region. This hinge swings about when the protein is forced to vibrate as a result of frequent kicks from other molecules around it, such as water molecules, lipids, and ions.

These computationally obtained insights could guide new experiments designed to uncover how integrins do their job.

"Our research sets up an avenue for future studies by offering a hypothesis that relates integrin activation and clustering," says Mofrad.

The research was supported by a National Science Foundation CAREER award to Mofrad. NERSC is supported by DOE's Office of Science.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

For more information, please click here

Contacts:
Dan Krotz

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

Laboratories

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

Discovery in new material raises questions about theoretical models of superconductivity March 13th, 2017

Perovskite edges can be tuned for optoelectronic performance: Layered 2D material improves efficiency for solar cells and LEDs March 10th, 2017

Imaging the inner workings of a sodium-metal sulfide battery for first time: Understanding how the structural and chemical makeup of the material changes during the charge/discharge process could help scientists advance battery design for future energy storage needs March 9th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

Nanogate Expands Sustainability Management: Nanogate publishes a statement of compliance with the German Sustainability Code for the first time March 15th, 2017

Nanomedicine

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Block copolymer micellization as a protection strategy for DNA origami March 17th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Biophysicists propose new approach for membrane protein crystallization March 8th, 2017

Discoveries

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

Announcements

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

Nanobiotechnology

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Block copolymer micellization as a protection strategy for DNA origami March 17th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Biophysicists propose new approach for membrane protein crystallization March 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project