Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Stirred, not shaken: Physicists gain more particle control

Abstract:
Cornell physicists can now precisely control how particles in viscous liquids swirl, twirl and whirl. Think of coffee and adding cream -- and gaining control of the particles in the cream. Understanding this concept could allow chemists, physicists and engineers to better detect molecules, control the mixture of nanoscale particles and enhance self-assembly in solutions.

Stirred, not shaken: Physicists gain more particle control

Ithaca, NY | Posted on March 21st, 2013

Brian Leahy, Cornell doctoral student in the field of physics, presented "Revisiting Taylor Dispersion: Differential Enhancement of Rotational and Translational Diffusion Under Oscillatory Shear" at the American Physical Society meeting, Baltimore, March 18. His co-researchers include: Xiang Cheng, physics postdoctoral researcher; Itai Cohen, professor of physics; and Desmond Ong '11.

If you stir, diffusion -- the random jostling of small particles from thermal energy -- is enhanced. This enhancement is called Taylor dispersion. "Stirring transports the cream through the coffee and also enhances diffusion of the cream particles," said Leahy.

Using 3-D imaging microscopes, the physicists can now also see the orientation of oblong particles in a viscous fluid, providing the ability to measure the individual particle rotation rates for the first time.

"By adding shear and adjusting the flow, particles can not only be oriented but their rotational diffusion can also change," said Leahy.

In a fluid, oblong particles that are small enough can change their orientation due to rotational diffusion that arises when fluid molecules kick the particles in random directions. When the particle-laden fluid is rubbed between two oscillating plates, the oblong particles also rotate end-on-end in what is known as a Jeffery's orbit.

The researchers showed that the combination of rotational diffusion and Jeffery orbits has an effect that is bigger than the so-called "sum of the parts," so that the particles change their orientation faster than either mechanism alone.

While this is basic, physical research, understanding these concepts could lead to opportunities in other fields, said Cohen: improved self-assembly of specially shaped particles, designer materials, or producing liquids with directional dependence that flow easily.

Leahy is supported by a National Defense Science and Engineering Graduate Fellowship.

####

For more information, please click here

Contacts:
Media Contact:
John Carberry
(607) 255-5553


Cornell Chronicle:
Blaine Friedlander
(607) 254-8093

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Physics

Superfast light source made from artificial atom April 28th, 2016

Imaging

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Bruker Introduces First of Its Kind Dimensional Analysis System: The Novel Contour CMM™ System Fully Integrates 3D Coordinate Measurements with Nanoscale Surface Height, Texture, Waviness and Form Characterization April 26th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Self Assembly

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Brookhaven's Oleg Gang Named a Battelle 'Inventor of the Year': Recognized for work using DNA to guide and regulate the self-assembly of nanoparticles into clusters and arrays with controllable properties April 25th, 2016

Researchers develop new semiconducting polymer for forthcoming flexible electronics April 21st, 2016

McMaster researchers achieve a first by coaxing molecules into assembling themselves: Major advance creates the potential for useful new materials April 21st, 2016

Discoveries

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Superfast light source made from artificial atom April 28th, 2016

Materials/Metamaterials

Exploring phosphorene, a promising new material April 29th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Announcements

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Tools

Exploring phosphorene, a promising new material April 29th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Chemists use DNA to build the world's tiniest thermometer April 27th, 2016

Bruker Introduces Dimension FastScan Pro Industrial AFM: Providing Nanometer-Resolution at High Scan Rates for up to 300-mm Samples April 26th, 2016

Military

Nanograft seeded with 3 cell types promotes blood vessel formation to speed wound healing April 27th, 2016

The light stuff: A brand-new way to produce electron spin currents - Colorado State University physicists are the first to demonstrate using non-polarized light to produce a spin voltage in a metal April 26th, 2016

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic