Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Magnetic nano-droplet discovery presents opportunities for telecommunications

Researchers from KTH: from left, Anders Eklund, Sohrab Sani, Majid Mohseni, Johan Åkerman, Sunjae Chung and Anh Nguyen.
Researchers from KTH: from left, Anders Eklund, Sohrab Sani, Majid Mohseni, Johan Åkerman, Sunjae Chung and Anh Nguyen.

Abstract:
A Swedish research team has successfully created a magnetic soliton - a spin torque-generated nano-droplet that could lead to technological innovation in such areas as mobile telecommunications.

Magnetic nano-droplet discovery presents opportunities for telecommunications

Stockholm, Sweden | Posted on March 21st, 2013

First theorized 35 years ago, the magnetic nano-droplet was created in a modified spintronic oscillator by a team from KTH Royal Institute of Technology in Stockholm and the University of Gothenburg. The breakthrough was published in the March 15 issue of Science.

Johan Åkerman, a professor in the Department of Physics, Gothenburg University, and associated guest researcher at KTH, is presenting the findings this week at the American Physical Society's March Meeting in Baltimore. Åkerman says that as early as 2010, the team began to modify spintronic oscillators in order to prove that magnetic nano-droplets exist.

The results of the research, which has been ongoing for two years, have been patented by the research team. Majid Mohseni, a researcher at KTH who defended the team research in December 2012, says that the findings could have significant impact.

"This will open up completely new possibilities in nano-magnetism and spintronics. Magnetic nano-droplets have great potential to translate into different applications," Mohseni says.

In mobile telecommunications, magnetic nano-droplets present opportunities to replace microwave technology, such as mobile phones and wireless networks, with much smaller, less expensive and more resource-efficient components.

Solitons, or solitary waves that behave like particles and retain their shape when moving at a constant speed, have been used for long distance, high speed information transmission. Scientists have long believed that they exist in magnetic environments, but until now they had never been observed.

The droplets take up a space of about 50 to 100 nanometers on a piece of magnetic film. At their centre, magnetization points towards the opposite direction, both against the surrounding spin (a quantum physical property) and the applied magnetic field.

####

About KTH The Royal Institute of Technology
Research at KTH includes not only technology but also natural and social sciences. Our varied research profile does support both general and special expertise, particularly in today´s top-priority subject areas, such as IT and biotechnology.

For more information, please click here

Contacts:
David Callahan

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spintronics

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

A Sea of Spinning Electrons: Rutgers-led discovery could spawn a wave of new electronic devices October 2nd, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Discoveries

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Announcements

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Quantum nanoscience

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

What can be discovered at the junction of physics and chemistry October 6th, 2017

Energy against the current on a quantum scale, without contradicting the laws of physics: A piece of research in which the UPV/EHU-University of the Basque Country has participated confirms that merely observing a flow of energy or particles can change its direction October 6th, 2017

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project