Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UMass Amherst Researchers Reveal Mechanism of Novel Biological Electron Transfer

Abstract:
When researchers at the University of Massachusetts Amherst led by microbiologist Derek Lovley discovered that the bacterium Geobacter sulfurreducens conducts electricity very effectively along metallic-like "microbial nanowires," they found physicists quite comfortable with the idea of such a novel biological electron transfer mechanism, but not biologists.

UMass Amherst Researchers Reveal Mechanism of Novel Biological Electron Transfer

Amherst, MA | Posted on March 19th, 2013

"For biologists, Geobacter's behavior represents a paradigm shift. It goes against all that we are taught about biological electron transfer, which usually involves electrons hopping from one molecule to another," Lovley says. "So it wasn't enough for us to demonstrate that the microbial nanowires are conductive and to show with physics the conduction mechanism, we had to determine the impact of this conductivity on the biology."

"We have now identified key components that make these hair-like pili we call nanowires conductive and have demonstrated their importance in the biological electron transport. This time we relied more on genetics. I think most biologists are more comfortable with genetics rather than physics," Lovley adds.

"From my perspective, this is huge. It really clinches a big question. We overturned the major objection the biologists were making and confirmed the assumption in our earlier work, that real metallic-like conductivity is taking place."

Findings are described in an early online issue of mBio, the open-access journal of the American Society for Microbiology. In addition to Lovley, the UMass Amherst team includes first author Madeline Vargas, with Nikhil Malvankar, Pier-Luc Tremblay, Ching Leang, Jessica Smith, Pranav Patel, Oona Snoeyenbos-West and Kelly Nevin.

In 2011, Lovely's group discovered a fundamental, previously unknown property of pili in Geobacter. They found that electrons are transported along the pili via the same metallic-like conductivity found in synthetic organic materials used in electronics. Electrons are conducted over remarkable distances, thousands of times the cell's length. But exactly how the pili accomplished this wasn't clear.

They knew that the conductivity of synthetic conducting organic materials can be attributed to aromatic ringed structures which share electrons, suspended in a kind of a cloud that allows the overlapping electrons to easily flow. It seemed possible that amino acids, which have similar aromatic rings, might serve the same function in biological protein structures like pili. Lovley's team looked for likely aromatic amino acid targets and then substituted non-aromatic amino acids for the aromatic ones to see if this reduced the conductivity of the pili.

It worked. The re-engineered pili with non-aromatic compounds substituted for aromatic ones looked perfect and unchanged under a microscope, but now they no longer functioned as wires. "This new strain is really bad at what Geobacter does best," Lovley says. "Geobacter is known for its ability to grow on iron minerals and for generating electric current in microbial fuel cells, but without conductive pili those capabilities are greatly diminished."

"What we did is equivalent to pulling the copper out of an extension cord," he adds. "The cord looks the same, but it can't conduct electricity anymore."

The ability of protein filaments to conduct electrons in this way not only has ramifications for scientists' basic understanding of natural microbial processes but practical implications for environmental cleanup and the development of renewable energy sources as well, he adds. Lovley's UMass Amherst lab has already been working with federal agencies and industry to use Geobacter to clean up groundwater contaminated with radioactive metals or petroleum and to power electronic monitoring devices with current generated by Geobacter.

His group has also recently shown that Geobacter uses its nanowires to feed electrons to other microorganisms that can produce methane gas. This is an important step in the conversion of organic wastes to methane, which can then be burned to produce electricity.

As more states, including national leader Massachusetts, pass laws to prevent hospitals, universities, hotels and large restaurants from disposing of food waste in landfills, Geobacter's role in producing methane could be part of the solution for how to deal with this waste. The Massachusetts law goes into effect in 2014. "Waste to methane is a well developed green energy strategy in Europe and is almost certain to become more important here in Massachusetts in the near future," Lovley notes.

Funding for this work was from the U.S. Office of Naval Research and the Department of Energy.

####

For more information, please click here

Contacts:
Janet Lathrop

413-545-0444

Copyright © University of Massachusetts at Amherst

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Discoveries

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Announcements

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Military

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Environment

Nanoparticles Prove Effective in Removing Phosphor from Calcareous Soil December 10th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Nanocatalysts Can Reduce Pollution Caused by Diesel Engines December 4th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

Energy

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

Nanobiotechnology

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Biomimetic dew harvesters: Understanding how a desert beetle harvests water from dew could improve drinking water collection in dew condensers December 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE