Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Cell on a Chip Reveals Protein Behavior

Abstract:
For years, scientists around the world have dreamed of building a complete, functional, artificial cell. Though this vision is still a distant blur on the horizon, many are making progress on various fronts. Prof. Roy Bar-Ziv and his research team in the Weizmann Institute's Material's and Interfaces Department recently took a significant step in this direction when they created a two-dimensional, cell-like system on a glass chip. This system, composed of some of the basic biological molecules found in cells - DNA, RNA, proteins - carried out one of the central functions of a living cell: gene expression, the process by which the information stored in the genes is translated into proteins. More than that, it enabled the scientists, led by research student Yael Heyman, to obtain "snapshots" of this process in nanoscale resolution.

Cell on a Chip Reveals Protein Behavior

Rehovot, Israel | Posted on March 18th, 2013

The system, consisting of glass chips that are only eight nanometers thick, is based on an earlier one designed in Bar-Ziv's lab by Dr. Shirley Daube and former student Dr. Amnon Buxboim. After being coated in a light-sensitive substance, the chips are irradiated with focused beams of ultraviolet light, which enables the biological molecules to bind to the substance in the irradiated areas. In this way, the scientists could precisely place DNA molecules encoding a protein marked with a green fluorescent marker in one area of the chip and antibodies that "trap" the colored proteins in an abutting area. When they observed the chips under a fluorescence microscope, the area in which they had placed the antibodies turned a glowing bright green. This meant that the DNA instructions had been copied into RNA molecules, which were in turn translated into fluorescent green proteins. The green proteins were then ensnared by the antibodies.

Next, the scientists asked whether their cell-like system could reproduce complex structural assemblies of naturally-occurring proteins. This time, they attached a viral gene to the chips' surface encoding a protein that can self-assemble into a nanotube. With the help of Dr. Sharon Wolf of the Electron Microscopy Unit, they observed a forest of minuscule tubes sprouting from the antibody area under an electron microscope.

The researchers then sought a way to produce and trap multiple proteins simultaneously by confining each protein in the area of its gene on the chip. On top of the chip to which the DNA encoding green proteins was bound, the scientists added a solution with a second gene encoding a red protein. The resulting red and green proteins competed for binding on the antibody traps, yielding a graded spatial separation in which the antibodies closest to the green genes had the highest concentration of green protein, with red concentrations rising farther afield. The results of this research recently appeared in Nature Nanotechnology.

Bar-Ziv: "We have shown that it is possible to build a protein "production line" outside of the cell and use it to observe a spectrum of protein activities." In the future, such a system may move from enabling the observation of proteins to providing the basis for techniques to create complex, active protein structures on demand.

Prof. Roy Bar Ziv's research is supported by the Yeda-Sela Center for Basic Research; and the Carolito Stiftung.

####

For more information, please click here

Contacts:
Batya Greenman
Publications and Media Relations Department
Weizmann Institute of Science
POB 26
Rehovot 76100
Israel
Tel: 972-8-934-3852
Mobile: 972-54-2638877
Fax: 972-8-934-4132

Copyright © Weizmann Institute of Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

News and information

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Synthetic Biology

Scientists Create Synthetic Membranes That Grow Like Living Cells June 22nd, 2015

$8.5M Grant For Developing Nano Printing Technology: 4-D printing to advance chemistry, materials sciences and defense capabilities June 18th, 2015

How natural channel proteins move in artificial membranes June 3rd, 2015

Researchers of the University of Tartu create a centre for developing designer cells with new functions April 8th, 2015

Nanomedicine

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells June 30th, 2015

Discoveries

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Announcements

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Tools

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Nanometrics to Announce Second Quarter Financial Results on July 23, 2015 July 2nd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Nanobiotechnology

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Nanometric sensor designed to detect herbicides can help diagnose multiple sclerosis June 23rd, 2015

Newly-Developed Biosensor in Iran Detects Cocaine Addiction June 23rd, 2015

Photonics/Optics/Lasers

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

The quantum spin Hall effect is a fundamental property of light June 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project