Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Cell on a Chip Reveals Protein Behavior

Abstract:
For years, scientists around the world have dreamed of building a complete, functional, artificial cell. Though this vision is still a distant blur on the horizon, many are making progress on various fronts. Prof. Roy Bar-Ziv and his research team in the Weizmann Institute's Material's and Interfaces Department recently took a significant step in this direction when they created a two-dimensional, cell-like system on a glass chip. This system, composed of some of the basic biological molecules found in cells - DNA, RNA, proteins - carried out one of the central functions of a living cell: gene expression, the process by which the information stored in the genes is translated into proteins. More than that, it enabled the scientists, led by research student Yael Heyman, to obtain "snapshots" of this process in nanoscale resolution.

Cell on a Chip Reveals Protein Behavior

Rehovot, Israel | Posted on March 18th, 2013

The system, consisting of glass chips that are only eight nanometers thick, is based on an earlier one designed in Bar-Ziv's lab by Dr. Shirley Daube and former student Dr. Amnon Buxboim. After being coated in a light-sensitive substance, the chips are irradiated with focused beams of ultraviolet light, which enables the biological molecules to bind to the substance in the irradiated areas. In this way, the scientists could precisely place DNA molecules encoding a protein marked with a green fluorescent marker in one area of the chip and antibodies that "trap" the colored proteins in an abutting area. When they observed the chips under a fluorescence microscope, the area in which they had placed the antibodies turned a glowing bright green. This meant that the DNA instructions had been copied into RNA molecules, which were in turn translated into fluorescent green proteins. The green proteins were then ensnared by the antibodies.

Next, the scientists asked whether their cell-like system could reproduce complex structural assemblies of naturally-occurring proteins. This time, they attached a viral gene to the chips' surface encoding a protein that can self-assemble into a nanotube. With the help of Dr. Sharon Wolf of the Electron Microscopy Unit, they observed a forest of minuscule tubes sprouting from the antibody area under an electron microscope.

The researchers then sought a way to produce and trap multiple proteins simultaneously by confining each protein in the area of its gene on the chip. On top of the chip to which the DNA encoding green proteins was bound, the scientists added a solution with a second gene encoding a red protein. The resulting red and green proteins competed for binding on the antibody traps, yielding a graded spatial separation in which the antibodies closest to the green genes had the highest concentration of green protein, with red concentrations rising farther afield. The results of this research recently appeared in Nature Nanotechnology.

Bar-Ziv: "We have shown that it is possible to build a protein "production line" outside of the cell and use it to observe a spectrum of protein activities." In the future, such a system may move from enabling the observation of proteins to providing the basis for techniques to create complex, active protein structures on demand.

Prof. Roy Bar Ziv's research is supported by the Yeda-Sela Center for Basic Research; and the Carolito Stiftung.

####

For more information, please click here

Contacts:
Batya Greenman
Publications and Media Relations Department
Weizmann Institute of Science
POB 26
Rehovot 76100
Israel
Tel: 972-8-934-3852
Mobile: 972-54-2638877
Fax: 972-8-934-4132

Copyright © Weizmann Institute of Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Imaging

Aspen Aerogels to Present at the Cowen and Company Technology, Media & Telecom Conference May 21st, 2015

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

Synthetic Biology

Researchers of the University of Tartu create a centre for developing designer cells with new functions April 8th, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

New tool could help reshape the limits of synthetic biology: The 'telomerator' reshapes synthetic yeast chromosome into more flexible, realistic form, redefining what geneticists can build November 3rd, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Nanomedicine

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Effective Nano-Micelles Designed in Iran to Treat Cancer May 20th, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Discoveries

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Announcements

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Tools

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

DELMIC announces a workshop hosted by Phenom World on Integrated CLEM to be held on Wednesday June 24th at the Francis Crick Institute (Lincoln Inn Fields Laboratory). May 19th, 2015

DiATOME enables surface preparation for AFM and FIB May 19th, 2015

Nanobiotechnology

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Studying dynamics of ion channels May 18th, 2015

Photonics/Optics/Lasers

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Computing at the speed of light: Utah engineers take big step toward much faster computers May 18th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project