Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Smallest Vibration Sensor in the Quantum World

The spin of a molecule (orange) changes and deforms the nanotube (black) mounted between two electrodes (gold). Figure: C. Grupe/KIT
The spin of a molecule (orange) changes and deforms the nanotube (black) mounted between two electrodes (gold).

Figure: C. Grupe/KIT

Abstract:
Carbon nanotubes and magnetic molecules are considered building blocks of future nanoelectronic systems. Their electric and mechanical properties play an important role. Researchers of Karlsruhe Institute of Technology and French colleagues from Grenoble and Strasbourg have now found a way to combine both components on the atomic level and to build a quantum mechanical system with novel properties. It is reported now in the print version of nature nanotechnology journal (DOI: 10.1038/nnano.2012.258).

Smallest Vibration Sensor in the Quantum World

Karlsruhe, Germany | Posted on March 16th, 2013

In their experiment the researchers used a carbon nanotube that was mounted between two metal electrodes, spanned a distance of about 1 µm, and could vibrate mechanically. Then, they applied an organic molecule with a magnetic spin due to an incorporated metal atom. This spin was oriented in an external magnetic field.

"In this setup, we demonstrated that the vibrations of the tube are influenced directly when the spin flips parallel or antiparallel to the magnetic field," explains Mario Ruben, head of the working group at KIT. When the spin changes, the resulting recoil is transferred to the carbon nanotube and the latter starts to vibrate. Vibration changes the atomic distances of the tube and, hence, its conductance that is used as a measure of motion.

The strong interaction between a magnetic spin and mechanical vibration opens up interesting applications apart from determining the states of motion of the carbon nanotube. It is proposed to determine the masses of individual molecules and to measure magnetic forces within the nano-regime. Use as a quantum bit in a quantum computer might also be feasible.

According to the supplementary information published in the same issue of nature nanotechnology such interactions are of high importance in the quantum world, i.e. in the range of discrete energies and tunnel effects, for the future use of nanoscopic effects in macroscopic applications. Combination of spin, vibration, and rotation on the nanoscale in particular may result in entirely new applications and technologies.

####

About Karlsruhe Institute of Technology
The Karlsruhe Institute of Technology (KIT) is the merger of the Forschungszentrum Karlsruhe, member of the Helmholtz Association, and the Universität Karlsruhe. This merger will give rise to an institution of internationally excellent research and teaching in natural and engineering sciences. In total, the KIT has 8000 employees and an annual budget of 700 million Euros. The KIT focuses on the knowledge triangle of research – teaching – innovation.

The Karlsruhe institution is a leading European energy research center and plays a visible role in nanosciences worldwide. KIT sets new standards in teaching and promotion of young scientists and attracts top scientists from all over the world. Moreover, KIT is a leading innovation partner of industry.

For more information, please click here

Contacts:
Monika Landgraf
Karlsruhe Institut of Technology
+49 721 608-47414

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic informationStrong spin–phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system

The supplementary information:

The homepage of the research group at KIT can be found at:

Videoanimation shows wave on Carbon nanotube:

Related News Press

News and information

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Videos/Movies

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Nanotech Advances Future Mobile Devices and Wearable Technology July 5th, 2017

ANU invention may help to protect astronauts from radiation in space July 3rd, 2017

Chip Technology

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Nanoelectronics

GLOBALFOUNDRIES Demonstrates 2.5D High-Bandwidth Memory Solution for Data Center, Networking, and Cloud Applications: Solution leverages 2.5D packaging with low-latency, high-bandwidth memory PHY built on FX-14™ ASIC design system August 9th, 2017

GLOBALFOUNDRIES, Silicon Mobility Deliver the Industry’s First Automotive FPCU to Boost Performance for Hybrid and Electric Vehicles: Silicon Mobility and GF’s 55nm LPx -enabled platform, with SST’s highly-reliable SuperFlash® memory technology, boosts automotive performance, ene August 3rd, 2017

Scientists discover new magnet with nearly massless charge carriers July 29th, 2017

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Discoveries

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Announcements

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Nanobiotechnology

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Quantum nanoscience

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Nanocrystalline LEDs: Red, green, yellow, blue ... August 7th, 2017

Scientists discover new magnet with nearly massless charge carriers July 29th, 2017

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project