Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers create nanoscale spinning magnetic droplets

Abstract:
Researchers have successfully created a magnetic soliton - a nano-sized, spinning droplet that was first theorized 35 years ago. These solitons have implications for the creation of magnetic, spin-based computers.

Researchers create nanoscale spinning magnetic droplets

Raleigh, NC | Posted on March 15th, 2013

Solitons are waves, localized in space, that preserve their size and momentum. They were first observed in water. Solitons composed of light have proved useful for long distance, high speed information transmission. But droplet solitons had never been observed in a magnetic environment, although scientists believed they could exist there.

North Carolina State University mathematician Mark Hoefer had created a mathematical model of what such a soliton might look like. When physicist Johan Åkerman and graduate student Majid Mohseni from Sweden's Royal Institute of Technology (KTH) and the University of Gothenburg got experimental data back that seemed to correspond with Hoefer's model, they decided to try and confirm the existence of a magnetic droplet soliton.

The physicists used a nanoscale wire to deliver a small amount of DC current to a magnet. All electrons possess angular momentum in the form of spin. Picture a spinning top. Angular momentum is what keeps that top upright, or pointed in a particular direction. Each electron within the magnet is like a spinning top, and in magnets, all of the electrons' spins are aligned in roughly the same way. Putting DC current into that group of electrons injects energy into the magnetic system, changing the spin of the local electrons in that immediate area. The spins of the electrons then precess, or "lean" like a top does when it is no longer upright, which causes a tiny spinning magnetic droplet, or soliton, to form.

The scientists were able to detect the soliton's presence by measuring the frequency of the precession. They observed the soliton's unique signature - a pronounced drop in frequency coupled with a large jump in power output - and knew they had been successful.

"These solitons are called 'dissipative,' because magnets want to dissipate energy from precession," Hoefer says. "They maintain their stability by balancing the amount of energy coming into the system via the DC current with the amount going out, and by balancing the nonlinearity, or amplitude, with dispersion, or a tendency to spread out."

In addition to demonstrating the existence of these solitons, the researchers also noted some other interesting properties of the solitons, including oscillatory motion and a periodic deformation they referred to as "breathing."

The researchers' findings appear in Science.

"Solitons are excellent transmitters of information, so finding them in a magnetic system could have all sorts of implications for spin-based computing, from new ways to process information to higher density hard drives," Hoefer says.

S. M. Mohseni, S. R. Sani, J. Persson and T. N. Anh Nguyen fabricated the devices. S. M. Mohseni, S. Chung, and R. K. Dumas carried out device characterization. S. M. Mohseni, Ye. Pogoryelov, P. K. Muduli, A. Eklund, R. K. Dumas, S. Bonetti, A. Deac, M. Hoefer, and J. Åkerman carried out the analysis. E. Iacocca and M. Hoefer performed micromagnetic simulations. All authors co-wrote the manuscript.

-peake-

Note to editors:

"Spin Torque-Generated Magnetic Droplet Solitons"

Published: March 15, 2013 in Science

Authors: S.M. Mohseni, S.R. Sani, N. Anh Nguyen, S. Chung, A. Eklund, S. Bonetti, J. Akerman, Royal Institute of Technology, Sweden; J. Persson, NanOsc AB, Sweden; Ye. Pogoryelov, P.K. Muduli, E. Iacocca, R. K. Dumas, University of Gothenburg, Sweden; A. Deac, Institute of Ion Beam Physics and Materials Research, Germany; M.A. Hoefer, North Carolina State University

####

For more information, please click here

Contacts:
Tracey Peake

919-515-6142

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Spintronics

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

A Sea of Spinning Electrons: Rutgers-led discovery could spawn a wave of new electronic devices October 2nd, 2017

Chip Technology

Error-free into the quantum computer age December 15th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Memory Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Leti Breakthroughs Point Way to Significant Improvements in SoC Memories December 6th, 2017

Scientists make transparent materials absorb light December 1st, 2017

A material with promising properties: Konstanz scientist synthesizes an important ferromagnetic semiconductor November 25th, 2017

Discoveries

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Announcements

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project