Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NIST Mechanical Micro-Drum Used as Quantum Memory

Colorized image of NIST micro-drum and circuit on a sapphire backing. JILA researchers demonstrated that the drum might be used as a memory device in future quantum computers.
Credit: Teufel/NIST
Colorized image of NIST micro-drum and circuit on a sapphire backing. JILA researchers demonstrated that the drum might be used as a memory device in future quantum computers.

Credit: Teufel/NIST

Abstract:
One of the oldest forms of computer memory is back again—but in a 21st century microscopic device designed by physicists at the National Institute of Standards and Technology (NIST) for possible use in a quantum computer.

NIST Mechanical Micro-Drum Used as Quantum Memory

Boulder, CO | Posted on March 15th, 2013

The NIST team has demonstrated that information encoded as a specific point in a traveling microwave signal—the vertical and horizontal positions of a wave pattern at a certain time—can be transferred to the mechanical beat of a micro-drum and later retrieved with 65 percent efficiency, a good figure for experimental systems like this. The research is described in the March 14 issue of Nature.* "We believe the mechanical drum motion could be used as a kind of local memory for quantum information systems," NIST physicist Konrad Lehnert says. "These experiments live at the boundary between classical and quantum systems."

The technique harks back to "delay line memory" that was used in some of the earliest electronic computers, including NIST's own 1950s computer, SEAC.** Those devices were fairly simple. They temporarily stored values during computation in the form of acoustic waves traveling down a column of mercury or other fluid. By contrast, the NIST micro-drum memory would exploit a mechanical form of quantum physics.

NIST scientists introduced the micro-drum in 2011.*** The micro-drum is embedded in a resonant circuit and can beat at different frequencies. By applying microwaves at specific frequencies, researchers can achieve rapid, reliable exchanges between the circuit's electrical energy, in the form of microwave photons (light particles), and the drum's mechanical energy in the form of phonons (units of vibration).

An applied microwave tone can cool the drum down to its lowest-energy ground state, with less than one quantum of energy—the quantum regime, where the drum can store and convert quantum information. The same interaction transfers information from microwaves in the circuit to the drum, while converting the drum to a temporary state beating at the received frequencies. A key innovation in the latest experiments is the ability to rapidly switch the circuit-drum interactions on and off based on the intensity of the applied microwave tone.

The drum has certain practical advantages as a quantum storage device. Its size and fabrication method are compatible with the devices used for chip-based superconducting quantum bits (qubits), which might be used to represent information in quantum computers. The drum also can retain quantum information for about the same length of time as superconducting circuits can. Quantum computers would rely on the rules of quantum mechanics, nature's rules for the submicroscopic world, to potentially solve important problems that are intractable using today's technology.

In the latest experiments, the quantum information is stored in the amplitude (vertical position) and phase (horizontal position) of the microwave pulse, or waveform, similar to the way some cellular telephones work, Lehnert says. Although this is a classical approach, the experiments are quasi-quantum because the fluctuations, or "noise," in the measurements are quantum mechanical, Lehnert says.

In 8,000 tries, the research team was able to prepare, transfer, store and recapture information 65 percent of the time. This is a good level of efficiency given the early stage of global research on quantum memories; competing quantum memory devices include special crystals and, in nonsolid systems, atomic gases. In the future, researchers plan to combine qubits with the micro-drum, which could serve as either a quantum memory or as an interface between otherwise incompatible systems such as those operating at microwave and optical frequencies. The advance may benefit fundamental physics experiments, quantum information systems and precise force sensing.

The experiments were performed at JILA, a joint institute of NIST and the University of Colorado Boulder, and co-authors include physicists from NIST's Boulder campus. The research was supported by the Defense Advanced Research Projects Agency, the National Science Foundation and NIST.

* T.A. Palomaki, J.W. Harlow, J.D. Teufel, R.W. Simmonds and K.W. Lehnert. Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature. Vol. 495 p. 210. March 14, 2013. doi:10.1038/nature11915.

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Laura Ost
303-497-4880

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

** Read about SEAC at:

*** See July 6, 2011, NIST news announcement, "Cooler Than Ever: NIST Mechanical Micro-Drum Chilled to Quantum Ground State," at:

Related News Press

Physics

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

Researchers refine method for detecting quantum entanglement June 18th, 2016

News and information

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Laboratories

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Discovery of gold nanocluster 'double' hints at other shape-changing particles: New analysis approach brings two unique atomic structures into focus June 19th, 2016

Efficient hydrogen production made easy: Sticking electrons to a semiconductor with hydrazine creates an electrocatalyst June 17th, 2016

Govt.-Legislation/Regulation/Funding/Policy

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Memory Technology

Ensuring the future affordability of wind turbines, computers and electric cars June 2nd, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Magnetic vortices defy temperature fluctuations: Common magnetic mineral is reliable witness to Earth's history April 19th, 2016

Quantum Computing

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

CWRU physicists deploy magnetic vortex to control electron spin: Potential technology for quantum computing, keener sensors June 21st, 2016

Discoveries

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Announcements

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Military

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Scientists engineer tunable DNA for electronics applications June 21st, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic