Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NIST Mechanical Micro-Drum Used as Quantum Memory

Colorized image of NIST micro-drum and circuit on a sapphire backing. JILA researchers demonstrated that the drum might be used as a memory device in future quantum computers.
Credit: Teufel/NIST
Colorized image of NIST micro-drum and circuit on a sapphire backing. JILA researchers demonstrated that the drum might be used as a memory device in future quantum computers.

Credit: Teufel/NIST

Abstract:
One of the oldest forms of computer memory is back again—but in a 21st century microscopic device designed by physicists at the National Institute of Standards and Technology (NIST) for possible use in a quantum computer.

NIST Mechanical Micro-Drum Used as Quantum Memory

Boulder, CO | Posted on March 15th, 2013

The NIST team has demonstrated that information encoded as a specific point in a traveling microwave signal—the vertical and horizontal positions of a wave pattern at a certain time—can be transferred to the mechanical beat of a micro-drum and later retrieved with 65 percent efficiency, a good figure for experimental systems like this. The research is described in the March 14 issue of Nature.* "We believe the mechanical drum motion could be used as a kind of local memory for quantum information systems," NIST physicist Konrad Lehnert says. "These experiments live at the boundary between classical and quantum systems."

The technique harks back to "delay line memory" that was used in some of the earliest electronic computers, including NIST's own 1950s computer, SEAC.** Those devices were fairly simple. They temporarily stored values during computation in the form of acoustic waves traveling down a column of mercury or other fluid. By contrast, the NIST micro-drum memory would exploit a mechanical form of quantum physics.

NIST scientists introduced the micro-drum in 2011.*** The micro-drum is embedded in a resonant circuit and can beat at different frequencies. By applying microwaves at specific frequencies, researchers can achieve rapid, reliable exchanges between the circuit's electrical energy, in the form of microwave photons (light particles), and the drum's mechanical energy in the form of phonons (units of vibration).

An applied microwave tone can cool the drum down to its lowest-energy ground state, with less than one quantum of energy—the quantum regime, where the drum can store and convert quantum information. The same interaction transfers information from microwaves in the circuit to the drum, while converting the drum to a temporary state beating at the received frequencies. A key innovation in the latest experiments is the ability to rapidly switch the circuit-drum interactions on and off based on the intensity of the applied microwave tone.

The drum has certain practical advantages as a quantum storage device. Its size and fabrication method are compatible with the devices used for chip-based superconducting quantum bits (qubits), which might be used to represent information in quantum computers. The drum also can retain quantum information for about the same length of time as superconducting circuits can. Quantum computers would rely on the rules of quantum mechanics, nature's rules for the submicroscopic world, to potentially solve important problems that are intractable using today's technology.

In the latest experiments, the quantum information is stored in the amplitude (vertical position) and phase (horizontal position) of the microwave pulse, or waveform, similar to the way some cellular telephones work, Lehnert says. Although this is a classical approach, the experiments are quasi-quantum because the fluctuations, or "noise," in the measurements are quantum mechanical, Lehnert says.

In 8,000 tries, the research team was able to prepare, transfer, store and recapture information 65 percent of the time. This is a good level of efficiency given the early stage of global research on quantum memories; competing quantum memory devices include special crystals and, in nonsolid systems, atomic gases. In the future, researchers plan to combine qubits with the micro-drum, which could serve as either a quantum memory or as an interface between otherwise incompatible systems such as those operating at microwave and optical frequencies. The advance may benefit fundamental physics experiments, quantum information systems and precise force sensing.

The experiments were performed at JILA, a joint institute of NIST and the University of Colorado Boulder, and co-authors include physicists from NIST's Boulder campus. The research was supported by the Defense Advanced Research Projects Agency, the National Science Foundation and NIST.

* T.A. Palomaki, J.W. Harlow, J.D. Teufel, R.W. Simmonds and K.W. Lehnert. Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature. Vol. 495 p. 210. March 14, 2013. doi:10.1038/nature11915.

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Laura Ost
303-497-4880

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

** Read about SEAC at:

*** See July 6, 2011, NIST news announcement, "Cooler Than Ever: NIST Mechanical Micro-Drum Chilled to Quantum Ground State," at:

Related News Press

News and information

Multi-million pound project to use nanotechnology to improve safety September 4th, 2015

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Tongfang Global and QD Vision Partner to Bring Wide Color Gamut to Global Television Lines: Color IQTM quantum dots help boost company’s focus on superior color reproduction September 3rd, 2015

QEOS and GLOBALFOUNDRIES to Offer Industry’s First CMOS Platform for MillimeterWave Markets: GLOBALSOLUTIONSSM Partnership will enable next-generation wireless technologies for applications in IoT, 5G and automotive September 3rd, 2015

GLOBALFOUNDRIES and Catena Partner to Provide Next-Generation RF Connectivity Solutions for Growing Wireless Markets: Catena Wi-Fi and Bluetooth RF technologies available on GLOBALFOUNDRIES 28nm Super Low Power Process technology September 3rd, 2015

Physics

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Laboratories

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Major innovation in molecular imaging delivers spatial and spectral info simultaneously: Berkeley Lab scientist invents technique to combine spectroscopy with super-resolution microscopy, enabling new ways to examine cell structures and study diseases August 17th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

Memory Technology

New material science research may advance tech tools August 31st, 2015

'Magic' sphere for information transfer: Professor at the Lomonosov Moscow State University made the «magic» sphere for information transfer August 24th, 2015

Superlattice design realizes elusive multiferroic properties: New design sandwiches a polar metallic oxide between an insulating material August 23rd, 2015

High-precision control of nanoparticles for digital applications August 19th, 2015

Quantum Computing

A little light interaction leaves quantum physicists beaming August 25th, 2015

Surprising discoveries about 2-D molybdenum disulfide: Berkeley Lab researchers use award-winning campanile probe on promising semiconductor August 15th, 2015

New optical chip lights up the race for quantum computer August 14th, 2015

Quantum computing advance locates neutral atoms August 12th, 2015

Discoveries

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

QEOS and GLOBALFOUNDRIES to Offer Industry’s First CMOS Platform for MillimeterWave Markets: GLOBALSOLUTIONSSM Partnership will enable next-generation wireless technologies for applications in IoT, 5G and automotive September 3rd, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Announcements

Multi-million pound project to use nanotechnology to improve safety September 4th, 2015

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Military

Making nanowires from protein and DNA September 3rd, 2015

Seeing quantum motion August 30th, 2015

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic