Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New NIST microscope measures nanomagnet property vital to 'spintronics'

Abstract:
Researchers at the National Institute of Standards and Technology (NIST) have developed a new microscope able to view and measure an important but elusive property of the nanoscale magnets used in an advanced, experimental form of digital memory. The new instrument already has demonstrated its utility with initial results that suggest how to limit power consumption in future computer memories.

video platformvideo managementvideo solutionsvideo player

Animation of spin waves excited by a transient magnetic field pulse in a nanomagnet, as simulated with NIST micromagnetics software (Object Oriented MicroMagnetic Framework, or OOMMF).

Credit: Boone/NIST

New NIST microscope measures nanomagnet property vital to 'spintronics'

Boulder, CO | Posted on March 15th, 2013

NIST's heterodyne magneto-optic microwave microscope, or H-MOMM, can measure collective dynamics of the electrons' spins—the basic phenomenon behind magnetism—in individual magnets as small as 100 nanometers in diameter. Nanomagnets are central components of low-power, high-speed "spintronic" computer memory, which might soon replace conventional random-access memory. Spintronics relies on electrons behaving like bar magnets, pointing in different directions to manipulate and store data, whereas conventional electronics rely on charge.

"The measurement technique is entirely novel, the capability that it has enabled is unprecedented, and the scientific results are groundbreaking," project leader Tom Silva says.

As described in a new paper,* NIST researchers used the H-MOMM to quantify, for the first time, the spin relaxation process—or damping—in individual nanomagnets. Spin relaxation is related to how much energy is required to switch a unit of spintronic memory between a 0 and a 1 (the bits used to represent data).

The nanomagnets used in experimental spintronic systems are too big to yield their secrets to conventional atomic physics tools yet too small for techniques used with bulk materials. Until now, researchers have been forced to measure the average damping from groups of nanomagnets. The new microscope enabled NIST researchers to study, in detail, the ups and downs of spin excitation in individual magnets made of a layer of a nickel-iron alloy on a sapphire base.

The H-MOMM combines optical and microwave techniques. Two green laser beams are merged to generate microwaves, which excite "spin waves"—magnetic oscillations that vary with position across an individual nanomagnet, like waves in a bathtub. Polarized light from one laser is used to analyze the excitation pattern. By measuring excitation as a function of magnetic field and microwave frequency, researchers can deduce the damping of various spin waves in each nanomagnet.

Measurement and control of magnetic damping is crucial for spintronics, because the smaller the damping, the less energy is required to store a bit of data, and the less power a device requires to operate. The NIST study suggests that designing spintronic devices to have uniform spin waves could dramatically reduce the energy required to write a bit.

The new microscope is one outcome of an ongoing NIST effort to develop methods for measuring defects in magnetic nanostructures. At extremely small scales, defects dominate and can disrupt magnetic device behavior, resulting in errors in reading and writing information.

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Laura Ost

303-497-4880

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

* H.T. Nembach, J.M. Shaw, C.T. Boone and T.J. Silva. Mode- and size-dependent Landau-Lifshitz damping in magnetic nanostructures: Evidence for non-local damping. Physical Review Letters. 110, 117201. Published March 12, 2013.

Related News Press

News and information

Measuring the Smallest Magnets July 28th, 2014

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Imaging

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

Laboratories

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Sono-Tek Corporation Announces New Clean Room Rated Laboratory Facility in China July 18th, 2014

Videos/Movies

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

"Nanocamera" takes pictures at distances smaller than light's own wavelength: How is it possible to record optically encoded information for distances smaller than the wavelength of light? July 17th, 2014

CIQUS researchers develop an extremely simple procedure to obtain nanosized graphenes July 15th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

Spintronics

University of Illinois study advances limits for ultrafast nano-devices July 10th, 2014

Harnessing magnetic vortices for making nanoscale antennas: Scientists explore ways to synchronize spins for more powerful nanoscale electronic devices April 30th, 2014

Could Diamonds Be A Computer’s Best Friend? Landmark experiment reveals the precious gem’s potential in computing March 24th, 2014

Spintronic Thermoelectric Power Generators: A step towards energy efficient electronic devices March 21st, 2014

Discoveries

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Measuring the Smallest Magnets July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Announcements

Measuring the Smallest Magnets July 28th, 2014

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Tools

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Bruker Announces Acquisition of High-Speed, 3D Super-Resolution Fluorescence Microscopy Company Vutara July 28th, 2014

Malvern Instruments completes acquisition of MicroCal and announces purchase of Archimedes product from Affinity Biosensors July 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE