Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > New details of atomic structure of water under extreme conditions found

Abstract:
Scientist from Dortmund, Helsinki, Potsdam, and the ESRF have revealed details of the microscopic atomic structure of water under extreme conditions. The results have now been published in the Proceedings of the National Academy of Sciences of the USA.

New details of atomic structure of water under extreme conditions found

Helsinki, Finland | Posted on March 14th, 2013

Liquid water remains a mystery even after decades of dedicated scientific investigations and researchers still struggle to fully describe its unusual structure and dynamics. At high temperatures and high pressures, water is in the so called supercritical state and exhibits a number of peculiar characteristics that are very unlike from water at ambient conditions. In this state water is a very aggressive solvent, enabling chemical reactions impossible otherwise, e.g. the oxidization of hazardous waste or the conversion of aqueous biomass streams into clean water and gases like hydrogen and carbon dioxide.

High temperature and high pressure conditions can also be found inside the Earth, in its lower crust and upper mantle. Here, the unique properties of supercritical water have been believed to play a key role in the transfer of mass and heat as well as in the formation of ore deposits and volcanoes. Supercritical water is even thought to have contributed to the origin of life.

Knowledge of the structural properties of water on an atomic scale under these extreme conditions of high temperature and high pressure may become very helpful in understanding these processes, says Christoph Sahle, from the Department of Physics at the University of Helsinki and a member of the research team behind the new results.

Spectroscopic investigations confirm previous theoretical model

Now, a research team of scientists from the Technische Universitšt Dortmund, Germany, the University of Helsinki, Finland, the Deutsches GeoForschungsZentrum in Potsdam, Germany, and the European Synchrotron Radiation Facility (ESRF), Grenoble, France, have used x-ray spectroscopy to study the structural properties of water in the supercritical state.

Conventional spectroscopic analyses can provide key insights into the atomic structure of a substance, however, these techniques are not well suited to studying water under supercritical conditions because of the complicated sample environments in which supercritical water has to be contained. Using the intense x-ray radiation from the ESRF for inelastic x-ray scattering spectroscopy and a new technique that makes it possible to look at the chemistry of water inside a complex environment together with a quantum mechanical modeling framework known as density functional theory, the group of scientists has made these spectroscopic investigations of water at high temperature and high pressure feasible.

The researchers found that the measured inelastic x-ray scattering spectra evolve systematically from liquid-like at ambient conditions to more gas-like at high temperatures and pressures. To learn more about the local atomic structure of water at the tested conditions, theoretical inelastic x-ray scattering spectra from computer simulations were calculated and compared to the experimental data. All features found in the experimental data and the systematic changes of these features as a function of temperature and pressure could be reproduced by the calculation.

Based on this close resemblance of the calculated and measured data, the authors extracted detailed information about the atomic structure and bonding. They could show that, according to the theoretical model, the microscopic structure of water remains homogeneous throughout the range of examined temperatures and pressures.

The presented findings also implicate means to study unknown disordered structures and samples under extreme conditions on an atomic scale in depth even when other structural probing techniques fail.

####

For more information, please click here

Contacts:
Christoph Sahle
tel. 358-9-191-59641

University of Helsinki

Minna Merilšinen-Tenhu
Press officer
University of Helsinki

Copyright © University of Helsinki

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read more: Microscopic Structure of Water at Conditions of the Earth's Crust and Mantle:

Related News Press

News and information

Nanoparticle versus cancer: Scientists have created nanoparticles which cure cancer harmlessly July 22nd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

New Yale-developed device lengthens the life of quantum information July 22nd, 2016

RMIT researchers make leap in measuring quantum states July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

Chemistry

New reaction for the synthesis of nanostructures July 21st, 2016

Pushing a single-molecule switch: An international team of researchers from Donostia International Physics Center, Fritz-Haber Institute of the Max Planck Society, University of Liverpool, and the Polish Academy of Sciences has shown a new way to operate a single-molecule switch July 19th, 2016

Rice's 'antenna-reactor' catalysts offer best of both worlds: Technology marries light-harvesting nanoantennas to high-reaction-rate catalysts July 18th, 2016

Discoveries

Nanoparticle versus cancer: Scientists have created nanoparticles which cure cancer harmlessly July 22nd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

New Yale-developed device lengthens the life of quantum information July 22nd, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Announcements

Nanoparticle versus cancer: Scientists have created nanoparticles which cure cancer harmlessly July 22nd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

New Yale-developed device lengthens the life of quantum information July 22nd, 2016

Graphene photodetectors: Thinking outside the 2-D box July 21st, 2016

Water

Electricity generated with water, salt and a 3-atoms-thick membrane: EPFL researchers have developed a system that generates electricity from osmosis with unparalleled efficiency. Their work, featured in Nature, uses seawater, fresh water, and a new type of membrane just 3 atoms July 15th, 2016

Bouncing droplets remove contaminants like pogo jumpers: Researchers at Duke University and the University of British Columbia are exploring whether surfaces can shed dirt without being subjected to fragile coatings July 7th, 2016

Mille-feuille-filter removes viruses from water May 19th, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic