Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New Technique Creates Stronger, Lightweight Magnesium Alloys

Nano-spaced stacking faults are parallel fault-lines in the structure of the alloy that increase the strength of the material.
Nano-spaced stacking faults are parallel fault-lines in the structure of the alloy that increase the strength of the material.

Abstract:
"Ultrastrong Mg-Alloy via Nano-Spaced Stacking Faults"

Authors: W. W. Jian, G. M. Cheng, W. Z. Xu, H. Yuan, M. H. Tsai, C. C. Koch, Y. T. Zhu and S. N. Mathaudhu, North Carolina State University; Q. D. Wang, Shangai Jiaotong University

Published: Online March 12, 2013 in Materials Research Letters

Abstract: Mg alloys are among the lightest alloys but they are usually weak. Here we report a new mechanism to make them ultrastrong while maintaining good ductility. Stacking faults with nanoscale spacing were introduced into a Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr (wt.%) alloy by conventional hot rolling, which produced a yield strength of ~575 MPa, an ultimate strength of ~600 MPa, and a uniform elongation of ~5.2%. Low stacking fault energy enabled the introduction of a high density of stacking faults, which impeded dislocation slip and promoted dislocation accumulation. These findings provide guidance for developing Mg alloys with superior mechanical properties.

New Technique Creates Stronger, Lightweight Magnesium Alloys

Raleigh, NC | Posted on March 13th, 2013

Researchers from North Carolina State University have developed a new technique for creating stronger, lightweight magnesium alloys that have potential structural applications in the automobile and aerospace industries.

Engineers constantly seek strong, lightweight materials for use in cars and planes to improve fuel efficiency. Their goal is to develop structural materials with a high "specific strength," which is defined as a material's strength divided by its density. In other words, specific strength measures how much load it can carry per unit of weight.

Researchers at NC State focused on magnesium alloys because magnesium is very light; on its own, though, it isn't very strong. In the study, however, the researchers were able to strengthen the material by introducing "nano-spaced stacking faults." These are essentially a series of parallel fault-lines in the crystalline structure of the alloy that isolate any defects in that structure. This increases the overall strength of the material by approximately 200 percent.

"This material is not as strong as steel, but it is so much lighter that its specific strength is actually much higher," says Dr. Suveen Mathaudhu, a co-author of a paper on the research and an adjunct assistant professor of materials science and engineering at NC State under the U.S. Army Research Office's Staff Research Program. "In theory, you could use twice as much of the magnesium alloy and still be half the weight of steel. This has real potential for replacing steel or other materials in some applications, particularly in the transportation industry - such as the framework or panels of vehicles."

The researchers were able to introduce the nano-spaced stacking faults to the alloy using conventional "hot rolling" technology that is widely used by industry. "We selected an alloy of magnesium, gadolinium, yttrium, silver and zirconium because we thought we could introduce the faults to that specific alloy using hot rolling," says Dr. Yuntian Zhu, a professor of materials science and engineering at NC State and co-author of the paper. "And we were proven right."

"Because we used existing technology, industry could adopt this technique quickly and without investing in new infrastructure," Mathaudhu says.

The paper, "Ultrastrong Mg-Alloy via Nano-Spaced Stacking Faults," was published online March 12 in Materials Research Letters and was co-authored by NC State Ph.D. students W.W. Jian, W.Z. Xu and H. Yuan; postdoctoral researcher Dr. G.M. Cheng; Dr. Carl Koch, Kobe Steel Distinguished Professor of Materials Science and Engineering at NC State; Dr. M.H. Tsai, a former visiting scientist at NC State; and Dr. Q.D. Wang, of Shanghai Jiaotang University. The work was supported by the U.S. Army Research Office.

####

For more information, please click here

Contacts:
Matt Shipman

919-515-6386

Dr. Yuntian Zhu

919.513.0559

Dr. Suveen Mathaudhu

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download paper:

Related News Press

News and information

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Champions Oncology, Inc. April 17th, 2014

Govt.-Legislation/Regulation/Funding/Policy

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

ECHA Planning Workshop on Regulatory Challenges in the Risk Assessment of Nanomaterials April 16th, 2014

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Discoveries

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Scientists observe quantum superconductor-metal transition and superconducting glass: A team including MIPT physicist observed quantum superconductor-metal transition and superconducting glass April 16th, 2014

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Materials/Metamaterials

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

Industrial Nanotech, Inc. Lands First Major Order from Pemex, Mexico’s State-Owned Oil and Gas Company April 14th, 2014

Properties of Coatings Used in Electrical Insulators Modified by Iranian Researchers April 14th, 2014

Announcements

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Champions Oncology, Inc. April 17th, 2014

Military

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Scalable CVD process for making 2-D molybdenum diselenide: Rice, NTU scientists unveil CVD production for coveted 2-D semiconductor April 8th, 2014

Rebar technique strengthens case for graphene: Rice University lab makes hybrid nanotube-graphene material that promises to simplify manufacturing April 7th, 2014

Automotive/Transportation

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Heat-conducting polymer cools hot electronic devices at 200 degrees C March 31st, 2014

Aerospace/Space

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

NASA Engineers Prepare Game Changing Cryotank for Testing April 9th, 2014

Space Industry Leaders Countdown To Space Tech Expo 2014 – Opening Next Week: Space Tech Expo and Conference 2014 opens its doors at the Long Beach Convention Center, Long Beach April 1 – 3 March 30th, 2014

Micro systems with big commercial potential featured in SPIE journal: Special section in Journal of Micro/Nanolithography, MEMS, and MOEMS highlights emerging MOEMS technologies March 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE