Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Crickethair sensor is 'highlight' of bio-inspired technology

Schematic build up of a sensitive artificial cricket hair
Schematic build up of a sensitive artificial cricket hair

Abstract:
Crickets use sensitive hairs on their cerci (projections on the abdomen) to detect predators. For these insects, air currents carry information about the location of nearby predators and the direction in which they are moving. These University of Twente researchers wondered whether they could use the same principle to create a new kind of "camera", capable of imaging entire flow patterns rather than measuring flows at a single point. They mimic the cricket hairs using microtechnology. The hairs themselves are made of a type of epoxy, which is attached to a flexible suspended plate. That acts as a capacitor, whose capacitance varies with movement. Measuring that variation gives you information about the movement. Using an entire field or array of such fine hairs, it is possible to identify patterns in the flow, in much the same way as complete images are formed from the individual pixels detected by chips in cameras.

Crickethair sensor is 'highlight' of bio-inspired technology

Enschede, Netherlands | Posted on March 11th, 2013

Flow camera

The trick is then to be able to read each hair individually. To this end, a range of options have been explored. Frequency Division Multiplexing (FDM) offers the greatest advantages. With FDM, the measured signal is not delayed while in transit, it is not difficult to synchronize the individual sensors, and the sensor array can easily be expanded without sacrificing performance. Also, the hardware involved is less complex than that required by other technologies. Looking ahead, the researchers believe that it will ultimately be a relatively simple matter to integrate the sensors and the hardware. This will result in a "camera" that is capable of imaging flow patterns. These could be used as a motion detection system in robots, for example.

The study by Ahmad Dagamseh and his colleagues was carried out in the Transducer Science and Technology group, headed by Professor Gijs Krijnen. The group is part of the University of Twente's MESA+ Institute for Nanotechnology. Their research was funded by the EU's Customized Intelligent Life-Inspired Arrays programme (CILIA), and by the "Bio-EARS" VICI grant awarded to Gijs Krijnen by the Netherlands Organization for Scientific Research (NWO) and the STW Technology Foundation.

####

For more information, please click here

Contacts:
Wiebe van der Veen
+31612185692

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The University of Twente publication is entitled “Towards a high-resolution flow camera using artificial hair sensor arrays for flow pattern observations”:

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Sensors

Scientists have put a high precision blood assay into a simple test strip: Researchers have developed a new biosensor test system based on magnetic nanoparticles February 3rd, 2016

Nanosheet growth technique could revolutionize nanomaterial production February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

NBC LEARN DEBUTS SIX-PART VIDEO SERIES, “NANOTECHNOLOGY: SUPER SMALL SCIENCE” Produced by NBC Learn in partnership with the National Science Foundation, and narrated by NBC News/MSNBC’s Kate Snow, series highlights leading research in nanotechnology January 25th, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Nanobiotechnology

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic