Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Reversible assembly leads to tiny encrypted messages

Photo by
L. Brian Stauffer

U. of I. chemistry professor Yi Lu and his research group developed a method for reversible and dymanic nano-assembly and used it to encrypt Morse code messages on a DNA origami tile.
Photo by L. Brian Stauffer

U. of I. chemistry professor Yi Lu and his research group developed a method for reversible and dymanic nano-assembly and used it to encrypt Morse code messages on a DNA origami tile.

Abstract:
Hidden in a tiny tile of interwoven DNA is a message. The message is simple, but decoding it unlocks the secret of dynamic nanoscale assembly.

Researchers at the University of Illinois at Urbana-Champaign have devised a dynamic and reversible way to assemble nanoscale structures and used it to encrypt a Morse code message. Led by Yi Lu, the Schenck Professor of Chemistry, the team published its development in the Journal of the American Chemical Society.

Reversible assembly leads to tiny encrypted messages

Champaign, IL | Posted on March 11th, 2013

Scientists and engineers who work with nanoscale materials use an important technique called programmable assembly to strategically combine simple building blocks into larger functional components or structures. Such assembly is important for applications in electronics, photonics, medicine and much more.

Most standard nano-assembly techniques yield a particular, static product. But looking at biology, Lu saw a lot of dynamic assemblies: reversible building processes, or substitutions that could be made after assembly to add or change function. Such versatility could enable many more applications for nanoscale materials, so Lu's group set out to explore nanoscale systems that could reliably and reversibly assemble.

"I think a critical challenge facing nanoscale science and engineering is reversible assembly," Lu said. "Researchers are now pretty good at putting components in places they desire, but not very good at putting something on and taking it off again. Many applications need dynamic assembly. You don't just want to assemble it once, you want to do it repeatedly, and not only using the same component, but also new components."

The group took advantage of a chemical system common in biology. The protein streptavidin binds very strongly to the small organic molecule biotin - it grabs on and doesn't let go. A small chemical tweak to biotin yields a molecule that also binds to streptavidin, but holds it loosely.

The researchers started with a template of DNA origami - multiple strands of DNA woven into a tile. They "wrote" their message in the DNA template by attaching biotin-bound DNA strands to specific locations on the tiles that would light up as dots or dashes. Meanwhile, DNA bound to the biotin derivative filled the other positions on the DNA template.

Then they bathed the tiles in a streptavidin solution. The streptavidin bonded to both the biotin and its derivative, making all the spots "light up" under an atomic force microscope and camouflaging the message. To reveal the hidden message, the researchers then put the tiles in a solution of free biotin. Since it binds to streptavidin so much more strongly, the biotin effectively removed the protein from the biotin derivative, so that only the DNA strands attached to the unaltered biotin kept hold of their streptavidin. The Morse code message, "NANO," was clearly readable under the microscope.

The researchers also demonstrated non-Morse characters, creating tiles that could switch back and forth between a capital "I" and a lowercase "i" as streptavidin and biotin were alternately added. (See an animation of the process.)

"This is an important step forward for nanoscale assembly," Lu said. "Now we can encode messages in much smaller scale, which is interesting. There's more information per square inch. But the more important advance is that now that we can carry out reversible assembly, we can explore much more versatile, much more dynamic applications."

Next, the researchers plan to use their technique to create other functional systems. Lu envisions assembling systems to perform a task in chemistry, biology, sensing, photonics or other area, then replacing a component to give the system an additional function. Since the key to reversibility is in the different binding strengths, the technique is not limited to the biotin-streptavidin system and could work for a variety of molecules and materials.

"As long as the molecules used in the assembly have two different affinities, we can apply this particular concept into other templates or processes," Lu said.

The National Science Foundation supported this work. Graduate students Ngo Yin Wong, Hang Xing and Li Huey Tan were co-authors of the paper. Lu also is affiliated with the department of bioengineering, the Beckman Institute for Advanced Science and Technology, and the Frederick Seitz Materials Research Laboratory at the U. of I.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1079


Yi Lu
217-333-2619

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “Nano-Encrypted Morse Code: A Versatile Approach to Programmable and Reversible Nanoscale Assembly and Disassembly,” is available online:

VIDEO: A DNA origami template seeded with biotin (blue) and a biotin derivative (green) to make a capital “I.” The protein streptavidin (red) binds to both molecules. When additional biotin is added, it removes the protein from the biotin derivative, revealing a lower case “i". Later, when more protein is added, the capital “I” is re-assembled.

Related News Press

News and information

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Imaging

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

Videos/Movies

“Line dancing bacteria win the 2014 Dolomite and Lab on a Chip Video Competition” December 16th, 2014

Microbullet hits confirm graphene's strength: Rice University lab test material for suitability in body armor, spacecraft protection December 1st, 2014

Purdue 3-D printing innovation capable of making stronger, lighter metal works for auto, aerospace industries November 20th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Molecular Machines

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Dartmouth researchers create 'green' process to reduce molecular switching waste December 15th, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Molecular Nanotechnology

Dartmouth researchers create 'green' process to reduce molecular switching waste December 15th, 2014

New technique allows low-cost creation of 3-D nanostructures December 8th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

Manipulating complex molecules by hand: New method in scanning probe microscopy: Jülich researchers create a word using 47 molecules November 6th, 2014

Discoveries

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Announcements

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Tools

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Nanobiotechnology

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Biomimetic dew harvesters: Understanding how a desert beetle harvests water from dew could improve drinking water collection in dew condensers December 8th, 2014

Photonics/Optics/Lasers

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE