Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Reversible assembly leads to tiny encrypted messages

Photo by
L. Brian Stauffer

U. of I. chemistry professor Yi Lu and his research group developed a method for reversible and dymanic nano-assembly and used it to encrypt Morse code messages on a DNA origami tile.
Photo by L. Brian Stauffer

U. of I. chemistry professor Yi Lu and his research group developed a method for reversible and dymanic nano-assembly and used it to encrypt Morse code messages on a DNA origami tile.

Abstract:
Hidden in a tiny tile of interwoven DNA is a message. The message is simple, but decoding it unlocks the secret of dynamic nanoscale assembly.

Researchers at the University of Illinois at Urbana-Champaign have devised a dynamic and reversible way to assemble nanoscale structures and used it to encrypt a Morse code message. Led by Yi Lu, the Schenck Professor of Chemistry, the team published its development in the Journal of the American Chemical Society.

Reversible assembly leads to tiny encrypted messages

Champaign, IL | Posted on March 11th, 2013

Scientists and engineers who work with nanoscale materials use an important technique called programmable assembly to strategically combine simple building blocks into larger functional components or structures. Such assembly is important for applications in electronics, photonics, medicine and much more.

Most standard nano-assembly techniques yield a particular, static product. But looking at biology, Lu saw a lot of dynamic assemblies: reversible building processes, or substitutions that could be made after assembly to add or change function. Such versatility could enable many more applications for nanoscale materials, so Lu's group set out to explore nanoscale systems that could reliably and reversibly assemble.

"I think a critical challenge facing nanoscale science and engineering is reversible assembly," Lu said. "Researchers are now pretty good at putting components in places they desire, but not very good at putting something on and taking it off again. Many applications need dynamic assembly. You don't just want to assemble it once, you want to do it repeatedly, and not only using the same component, but also new components."

The group took advantage of a chemical system common in biology. The protein streptavidin binds very strongly to the small organic molecule biotin - it grabs on and doesn't let go. A small chemical tweak to biotin yields a molecule that also binds to streptavidin, but holds it loosely.

The researchers started with a template of DNA origami - multiple strands of DNA woven into a tile. They "wrote" their message in the DNA template by attaching biotin-bound DNA strands to specific locations on the tiles that would light up as dots or dashes. Meanwhile, DNA bound to the biotin derivative filled the other positions on the DNA template.

Then they bathed the tiles in a streptavidin solution. The streptavidin bonded to both the biotin and its derivative, making all the spots "light up" under an atomic force microscope and camouflaging the message. To reveal the hidden message, the researchers then put the tiles in a solution of free biotin. Since it binds to streptavidin so much more strongly, the biotin effectively removed the protein from the biotin derivative, so that only the DNA strands attached to the unaltered biotin kept hold of their streptavidin. The Morse code message, "NANO," was clearly readable under the microscope.

The researchers also demonstrated non-Morse characters, creating tiles that could switch back and forth between a capital "I" and a lowercase "i" as streptavidin and biotin were alternately added. (See an animation of the process.)

"This is an important step forward for nanoscale assembly," Lu said. "Now we can encode messages in much smaller scale, which is interesting. There's more information per square inch. But the more important advance is that now that we can carry out reversible assembly, we can explore much more versatile, much more dynamic applications."

Next, the researchers plan to use their technique to create other functional systems. Lu envisions assembling systems to perform a task in chemistry, biology, sensing, photonics or other area, then replacing a component to give the system an additional function. Since the key to reversibility is in the different binding strengths, the technique is not limited to the biotin-streptavidin system and could work for a variety of molecules and materials.

"As long as the molecules used in the assembly have two different affinities, we can apply this particular concept into other templates or processes," Lu said.

The National Science Foundation supported this work. Graduate students Ngo Yin Wong, Hang Xing and Li Huey Tan were co-authors of the paper. Lu also is affiliated with the department of bioengineering, the Beckman Institute for Advanced Science and Technology, and the Frederick Seitz Materials Research Laboratory at the U. of I.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1079


Yi Lu
217-333-2619

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, Nano-Encrypted Morse Code: A Versatile Approach to Programmable and Reversible Nanoscale Assembly and Disassembly, is available online:

VIDEO: A DNA origami template seeded with biotin (blue) and a biotin derivative (green) to make a capital I. The protein streptavidin (red) binds to both molecules. When additional biotin is added, it removes the protein from the biotin derivative, revealing a lower case i". Later, when more protein is added, the capital I is re-assembled.

Related News Press

News and information

Nanoscale Trojan horses treat inflammation May 24th, 2016

Two-stage nanoparticle delivery of piperlongumine and TRAIL anti-cancer therapy May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Graphene makes rubber more rubbery May 23rd, 2016

Videos/Movies

Programmable materials find strength in molecular repetition May 23rd, 2016

Imaging

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Syracuse University chemists add color to chemical reactions: Chemists in the College of Arts and Sciences have come up with an innovative new way to visualize and monitor chemical reactions in real time May 19th, 2016

Carnegie Mellon develops bio-mimicry method for preparing and labeling stem cells: Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI May 19th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

ORNL demonstrates large-scale technique to produce quantum dots May 21st, 2016

Molecular Machines

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Physicists build engine consisting of one atom: World's smallest heat engine uses just a single particle April 17th, 2016

Revealing the fluctuations of flexible DNA in 3-D: First-of-their-kind images by Berkeley Lab-led research team could aid in use of DNA to build nanoscale devices March 31st, 2016

Molecular Nanotechnology

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Physicists build engine consisting of one atom: World's smallest heat engine uses just a single particle April 17th, 2016

Physicists prove energy input predicts molecular behavior: Theoretical proof could lead to more reliable nanomachines March 22nd, 2016

Discoveries

Nanoscale Trojan horses treat inflammation May 24th, 2016

Two-stage nanoparticle delivery of piperlongumine and TRAIL anti-cancer therapy May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Graphene makes rubber more rubbery May 23rd, 2016

Announcements

Nanoscale Trojan horses treat inflammation May 24th, 2016

Two-stage nanoparticle delivery of piperlongumine and TRAIL anti-cancer therapy May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Graphene makes rubber more rubbery May 23rd, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanoscale Trojan horses treat inflammation May 24th, 2016

Two-stage nanoparticle delivery of piperlongumine and TRAIL anti-cancer therapy May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Graphene makes rubber more rubbery May 23rd, 2016

Tools

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Carnegie Mellon develops bio-mimicry method for preparing and labeling stem cells: Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI May 19th, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

Nanobiotechnology

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Two-stage nanoparticle delivery of piperlongumine and TRAIL anti-cancer therapy May 23rd, 2016

Photonics/Optics/Lasers

Photon collisions: Photonic billiards might be the newest game! May 20th, 2016

Well Leave the Lights On For You: Photonics advances allow us to be seen across the universe, with major implications for the search for extraterrestrial intelligence, says UC Santa Barbara physicist Philip Lubin - See more at: http://www.news.ucsb.edu/2016/016805/we-ll-leave-li May 17th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

UW researchers unleash graphene 'tiger' for more efficient optoelectronics May 16th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic