Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Reversible assembly leads to tiny encrypted messages

Photo by
L. Brian Stauffer

U. of I. chemistry professor Yi Lu and his research group developed a method for reversible and dymanic nano-assembly and used it to encrypt Morse code messages on a DNA origami tile.
Photo by L. Brian Stauffer

U. of I. chemistry professor Yi Lu and his research group developed a method for reversible and dymanic nano-assembly and used it to encrypt Morse code messages on a DNA origami tile.

Abstract:
Hidden in a tiny tile of interwoven DNA is a message. The message is simple, but decoding it unlocks the secret of dynamic nanoscale assembly.

Researchers at the University of Illinois at Urbana-Champaign have devised a dynamic and reversible way to assemble nanoscale structures and used it to encrypt a Morse code message. Led by Yi Lu, the Schenck Professor of Chemistry, the team published its development in the Journal of the American Chemical Society.

Reversible assembly leads to tiny encrypted messages

Champaign, IL | Posted on March 11th, 2013

Scientists and engineers who work with nanoscale materials use an important technique called programmable assembly to strategically combine simple building blocks into larger functional components or structures. Such assembly is important for applications in electronics, photonics, medicine and much more.

Most standard nano-assembly techniques yield a particular, static product. But looking at biology, Lu saw a lot of dynamic assemblies: reversible building processes, or substitutions that could be made after assembly to add or change function. Such versatility could enable many more applications for nanoscale materials, so Lu's group set out to explore nanoscale systems that could reliably and reversibly assemble.

"I think a critical challenge facing nanoscale science and engineering is reversible assembly," Lu said. "Researchers are now pretty good at putting components in places they desire, but not very good at putting something on and taking it off again. Many applications need dynamic assembly. You don't just want to assemble it once, you want to do it repeatedly, and not only using the same component, but also new components."

The group took advantage of a chemical system common in biology. The protein streptavidin binds very strongly to the small organic molecule biotin - it grabs on and doesn't let go. A small chemical tweak to biotin yields a molecule that also binds to streptavidin, but holds it loosely.

The researchers started with a template of DNA origami - multiple strands of DNA woven into a tile. They "wrote" their message in the DNA template by attaching biotin-bound DNA strands to specific locations on the tiles that would light up as dots or dashes. Meanwhile, DNA bound to the biotin derivative filled the other positions on the DNA template.

Then they bathed the tiles in a streptavidin solution. The streptavidin bonded to both the biotin and its derivative, making all the spots "light up" under an atomic force microscope and camouflaging the message. To reveal the hidden message, the researchers then put the tiles in a solution of free biotin. Since it binds to streptavidin so much more strongly, the biotin effectively removed the protein from the biotin derivative, so that only the DNA strands attached to the unaltered biotin kept hold of their streptavidin. The Morse code message, "NANO," was clearly readable under the microscope.

The researchers also demonstrated non-Morse characters, creating tiles that could switch back and forth between a capital "I" and a lowercase "i" as streptavidin and biotin were alternately added. (See an animation of the process.)

"This is an important step forward for nanoscale assembly," Lu said. "Now we can encode messages in much smaller scale, which is interesting. There's more information per square inch. But the more important advance is that now that we can carry out reversible assembly, we can explore much more versatile, much more dynamic applications."

Next, the researchers plan to use their technique to create other functional systems. Lu envisions assembling systems to perform a task in chemistry, biology, sensing, photonics or other area, then replacing a component to give the system an additional function. Since the key to reversibility is in the different binding strengths, the technique is not limited to the biotin-streptavidin system and could work for a variety of molecules and materials.

"As long as the molecules used in the assembly have two different affinities, we can apply this particular concept into other templates or processes," Lu said.

The National Science Foundation supported this work. Graduate students Ngo Yin Wong, Hang Xing and Li Huey Tan were co-authors of the paper. Lu also is affiliated with the department of bioengineering, the Beckman Institute for Advanced Science and Technology, and the Frederick Seitz Materials Research Laboratory at the U. of I.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1079


Yi Lu
217-333-2619

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “Nano-Encrypted Morse Code: A Versatile Approach to Programmable and Reversible Nanoscale Assembly and Disassembly,” is available online:

VIDEO: A DNA origami template seeded with biotin (blue) and a biotin derivative (green) to make a capital “I.” The protein streptavidin (red) binds to both molecules. When additional biotin is added, it removes the protein from the biotin derivative, revealing a lower case “i". Later, when more protein is added, the capital “I” is re-assembled.

Related News Press

Imaging

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

International research partnership tricks the light fantastic March 2nd, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

News and information

International research partnership tricks the light fantastic March 2nd, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Videos/Movies

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Simulating superconducting materials with ultracold atoms: Rice physicists build superconductor analog, observe antiferromagnetic order February 23rd, 2015

Waterloo invention advances quantum computing research: New device, which will be used in labs around the world to develop quantum technologies, produces fragile entangled photons in a more efficient way February 16th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New nanodevice defeats drug resistance: Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs March 2nd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Molecular Machines

Monitoring the real-time deformation of carbon nanocoils under axial loading February 18th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Mysteries of ‘Molecular Machines’ Revealed: Phenix software uses X-ray diffraction spots to produce 3-D image December 22nd, 2014

Molecular Nanotechnology

Monitoring the real-time deformation of carbon nanocoils under axial loading February 18th, 2015

Nanotechnology: Better measurements of single molecule circuits February 18th, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

Tiny robotic 'hands' could improve cancer diagnostics, drug delivery February 4th, 2015

Discoveries

Colon + septic tank = unique, at times stinky, study: Researchers use lab-scale human colon and septic tank to study impact of copper nanoparticles on the environment March 2nd, 2015

New nanodevice defeats drug resistance: Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs March 2nd, 2015

Breakthrough in OLED technology March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Announcements

International research partnership tricks the light fantastic March 2nd, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Glass coating improves battery performance: To improve lithium-sulfur batteries, researchers added glass cage-like coating and graphene oxide March 2nd, 2015

New nanodevice defeats drug resistance: Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs March 2nd, 2015

Breakthrough in OLED technology March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Tools

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

International research partnership tricks the light fantastic March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Mass spectrometers with optimised hydrogen pumping March 1st, 2015

Nanobiotechnology

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Bacteria network for food: Bacteria connect to each other and exchange nutrients February 23rd, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Better batteries inspired by lowly snail shells: Biological molecules can latch onto nanoscale components and lock them into position to make high performing Li-ion battery electrodes, according to new research presented at the 59th annual meeting of the Biophysical Society February 12th, 2015

Photonics/Optics/Lasers

Breakthrough in OLED technology March 2nd, 2015

International research partnership tricks the light fantastic March 2nd, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE