Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Pushing X-rays to the Edge to Draw the Nanoworld into Focus: A new x-ray imaging technique yields unprecedented measurements of nanoscale structures

This rendering shows the high-intensity x-ray beam striking and then traveling through the gray sample material. In this new technique, the x-ray scattering—the blue and white ripples—is considerably less distorted than in other methods, producing superior images with less complex analysis.
This rendering shows the high-intensity x-ray beam striking and then traveling through the gray sample material. In this new technique, the x-ray scattering—the blue and white ripples—is considerably less distorted than in other methods, producing superior images with less complex analysis.

Abstract:
Photographers rely on precision lenses to generate well-focused and crystal-clear images. These high-quality optics—readily available and produced in huge quantities—are often taken for granted. But as scientists explore the details of materials spanning just billionths of a meter, engineering the nanoscale equivalent of a camera lens becomes notoriously difficult.

Pushing X-rays to the Edge to Draw the Nanoworld into Focus: A new x-ray imaging technique yields unprecedented measurements of nanoscale structures

Upton, NY | Posted on March 11th, 2013

Instead of working with polished glass, physicists must use ingenious tricks, including shooting concentrated beams of x-rays directly into materials. These samples then act as light-bending lenses, and the x-ray deflections can be used to deduce the material's nanostructures. Unfortunately, the multilayered internal structures of real materials bend light in extremely complex and unexpected ways. When scientists grapple with this kind of warped imagery, they use elaborate computer calculations to correct for the optical obstacles found on the nanoscale and create detailed visual models.

Now, owing to a happy accident and subsequent insight, researchers at the US Department of Energy's (DOE) Brookhaven National Laboratory have developed a new and strikingly simple x-ray scattering technique—detailed in the February issue of the Journal of Applied Crystallography—to help draw nanomaterials ranging from catalysts to proteins into greater focus.

"During an experiment, we noticed that one of the samples was misaligned," said physicist Kevin Yager, a coauthor on the new study. "Our x-ray beam was hitting the edge, not the center as is typically desired. But when we saw how clean and undistorted the data was, we immediately realized that this could be a huge advantage in measuring nanostructures."

This serendipitous discovery at Brookhaven's National Synchrotron Light Source (NSLS) led to the development of a breakthrough imaging technique called Grazing-Transmission Small Angle X-ray Scattering (GTSAXS). The new method requires considerably less correction and a much simpler analysis, resulting in superior images with profound implications for future advances in materials science.

"Conventional scattering produces images that are 'distorted'—the data you want is there, but it's stretched, compressed, and multiply scattered in complicated ways as the x-rays enter and exit the sample," said physicist and coauthor Ben Ocko. "Our insight was that undistorted scattering rays were emitted inside the sample—but they usually get absorbed as they travel through the substrate. By moving the sample and beam near the edge of the substrate, we allow this undistorted scattering to escape and reach the detector."

The Brookhaven Lab collaboration was not the first group to encounter the diffraction that occurs along a material's edge, but it was the first to reconsider and harness the unexpected error.

"Until now, no one bothered to dig into the details, and figure out how to use it as a measurement technique, rather than as a misalignment to be corrected," added Xinhui Lu, the lead author of the study.

GTSAXS, like other scattering techniques, offers a complement to other imaging processes because it can measure the average structure throughout a sample, rather than just pinpointing selected areas. Scattering also offers an ideal method for the real-time studies of nanoscale changes and reactions such as the propagation of water through soft nanomaterials.

"This technique is broadly applicable to any nanostructure sitting on a flat substrate," said study coauthor Chuck Black. "Lithographic patterns, catalytic nanoparticles, self-assembled polymers, etc.—they can all be studied. This technique should be particularly powerful for very thin films with complicated three-dimensional structures, which to date have been difficult to study."

Brookhaven's NSLS supplies the intense x-ray beams essential to this technique, which requires extremely short wavelengths to interact with nanoscale materials. At NSLS, accelerated electrons emit these high-energy photons, which are then channeled down a beamline and focused to precisely strike the target material. When the next generation light source, NSLS-II, opens in 2014, GTSAXS will offer even greater experimental potential.

"We look forward to implementing this technique at NSLS-II," Yager said, with Ocko adding: "The excellent beam focusing should enable us to probe the near-edge region more effectively, making GTSAXS even more robust."

The research was funded by the DOE's Office of Science and conducted at both NSLS and Brookhaven Lab's Center for Functional Nanomaterials — the Office of Science supports both of these leading facilities.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

####

About Brookhaven National Laboratory
Brookhaven National Laboratory is a multipurpose research institution funded by the U.S. Department of Energy. Located on Long Island, NY, Brookhaven operates large-scale facilities for studies in physics, chemistry, biology, medicine, applied science, and advanced technology. The Laboratory's almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world.

For more information, please click here

Contacts:
Justin Eure

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Imaging

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Physics

Doubling down on Schrödinger's cat May 27th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Laboratories

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

ORNL demonstrates large-scale technique to produce quantum dots May 21st, 2016

Govt.-Legislation/Regulation/Funding/Policy

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Self Assembly

Searching for a nanotech self-organizing principle May 1st, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Brookhaven's Oleg Gang Named a Battelle 'Inventor of the Year': Recognized for work using DNA to guide and regulate the self-assembly of nanoparticles into clusters and arrays with controllable properties April 25th, 2016

Researchers develop new semiconducting polymer for forthcoming flexible electronics April 21st, 2016

Discoveries

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Materials/Metamaterials

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Tools

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic