Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > University of Illinois researchers develop novel technique for chemical identification at the nanometer scale

Atomic force microscope infrared spectroscopy (AFM-IR) of polymer nanostructures.
Atomic force microscope infrared spectroscopy (AFM-IR) of polymer nanostructures.

Abstract:
For more than 20 years, researchers have been using atomic force microscopy (AFM) to measure and characterize materials at the nanometer scale. However AFM-based measurements of chemistry and chemical properties of materials were generally not possible, until now.

University of Illinois researchers develop novel technique for chemical identification at the nanometer scale

Urbana, IL | Posted on March 9th, 2013

Researchers at the University Illinois report that they have measured the chemical properties of polymer nanostructures as small as 15 nm, using a novel technique called atomic force microscope infrared spectroscopy (AFM-IR). The article, "Atomic force microscope infrared spectroscopy on 15nm scale polymer nanostructures," appears in the Review of Scientific Instruments 84, published by the American Institute of Physics.

"AFM-IR is a new technique for measuring infrared absorption at the nanometer scale," explained William P. King, an Abel Bliss Professor in the Department of Mechanical Science and Engineering at Illinois. "The first AFM-based measurements could measure the size and shape of nanometer-scale structures. Over the years, researchers improved AFM to measure mechanical properties and electrical properties on the nanometer scale.

"These infrared absorption properties provide information about chemical bonding in a material sample, and these infrared absorption properties can be used to identify the material," added King, who is also the director of the National Science Foundation (NSF) Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems at Illinois. "The polymer nanostructures are about an order of magnitude smaller than those measured previously."

The research is enabled by a new way to analyze the way the nanometer-scale dynamics within the AFM-IR system. The researchers analyzed the AFM-IR dynamics using a wavelet transform, which organizes the AFM-IR signals that vary in both time and in frequency. By separating the time and frequency components, the researchers were able to improve the signal to noise within AFM-IR and to thereby measure significantly smaller samples than previously possible.

The ability to measure the chemical composition of polymer nanostructures is important for a variety of applications, including semiconductors, composite materials, and medical diagnostics.

The authors on the research are Jonathan Felts, Hanna Cho, Min-Feng Yu, Lawrence Bergman, Alex Vakkakis, and William P. King. The article is available online.

####

For more information, please click here

Contacts:
William P. King
Department of Mechanical Science and Engineering
College of Engineering
University of Illinois at Urbana-Champaign

217-244-3864

Copyright © University of Illinois College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Chemistry

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

Could hemp nanosheets topple graphene for making the ideal supercapacitor? August 12th, 2014

Iranians Find Novel Method for Processing Highly Pure Ceramic Nanoparticles August 12th, 2014

Discoveries

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Announcements

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Tools

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Hiden Release New Gas Analysis Catalogue August 21st, 2014

Wyatt Technology’s 24th International Light Scattering Colloquium to Highlight Developments in Applications and Characterization of Nanoparticles August 21st, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE