Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Photo-Immunotherapy Boosts Nanoparticle Delivery to Tumors

Abstract:
One of the main reasons that nanoparticles can boost the effectiveness of an anticancer drug while decreasing its toxicity is that they are able to accumulate at cancerous sites in the body through the abnormally leaky blood vessels that surround most solid tumors. While enhanced permeability and retention (EPR) phenomenon is effective, it is inefficient and the vast majority of an injected dose of nanoparticle-entrapped drug is excreted from the body without ever reaching its intended target. Now, however, a team of investigators from the National Cancer Institute (NCI) has found a way of markedly enhancing the EPR effect and boosting nanoparticle accumulation in tumors by more than 20 fold.

Photo-Immunotherapy Boosts Nanoparticle Delivery to Tumors

Bethesda, MD | Posted on March 7th, 2013

Hisataka Kobayashi and his colleagues at NCI's Center for Cancer Research employed a technique they call photo-immunotherapy, which uses an antibody linked to a light-sensitive compound or photosensitizer, to increase the leakiness of tumor-associated blood vessels. The resulting super-enhanced permeability and retention (SUPR) not only increased the amount of drug-loaded nanoparticles that accumulated in sensitized tumors, but more importantly, significantly reduced the size of treated tumors. The investigators report their work in the journal ACS Nano.

To create their photo-immunotherapy agent, the NCI team linked an FDA-approved monoclonal antibody, panitumumab, that targets the EGFR receptor variant, ErbB1, that is over-expressed on some solid tumors to a photosensitizing agent known as IR700. One day after injecting this agent into tumor-bearing mice, the investigators used a single dose of near-infrared light to activate the agent. They then injected panitumumab with a fluorescent label which could be imaged and found that the antibody rapidly accumulated only in the tumors that had been sensitized by irradiation and not in those that had not been sensitized.

Subsequent experiments showed that the irradiated antibody-linked photosensitizer damages the first layer of tumor cells that sits next to the leaky blood vessels. When these cells are damaged, it changes the pressure around the blood vessels, causing them to expand, which increases their leakiness. The investigators demonstrated that the SUPR effect increases the permeability of these blood vessels to particles as large as 200 nanometers.

In a final set of experiments, the researchers then administered commercially available liposome-encapsulated daunorubicin one hour after irradiation. Thirty days after 10 animals were treated, seven of the mice were still alive, compared to only one animal that was treated with liposomal daunorubicin alone.

####

About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors."

Related News Press

News and information

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Nanomedicine

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Discoveries

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Announcements

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project