Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticles Mimic Cholesterol Transporter and Attack Lymphoma

Abstract:
High-density lipoprotein (HDL) is well-known for its role in protecting the body from developing coronary artery disease, but HDL also helps lymphomas and other cancers acquire the large amounts of cholesterol they need to maintain the structure of their cell membranes as they grow rapidly. Researchers at Northwestern University have taken advantage of this dependency on HDL to create an HDL-mimicking nanoparticle that starves lymphoma cells of cholesterol, triggering them to commit programmed cell death without the use of any other anticancer agent.

Nanoparticles Mimic Cholesterol Transporter and Attack Lymphoma

Bethesda, MD | Posted on March 7th, 2013

C. Shad Thaxton, of the Robert H. Lurie Comprehensive Cancer Center at Northwestern and member of the Northwestern University Center of Cancer Nanotechnology Excellence, and Leo Gordon, of Northwestern's Feinberg School of Medicine, led the team that developed this biomimetic HDL nanostructure. The investigators published their findings in the Proceedings of the National Academy of Sciences.

To create their biomimetic HDL nanostructures, the researchers start with spherical gold nanoparticles that are five nanometers in diameter and add the human protein ApoA1 and two phospholipids found in native HDLs. The gold nanoparticle serves two functions. First, it acts as a template that controls the shape and size of the biomimetic particles so that they recognize and bind tightly to a specific receptor, known as scavenger receptor type B-1 (SR-B1), which is expressed by lymphoma cells. Second, the gold core occupies the space that is normally filled by cholesterol esters, which thereby limits the ability of these particles to deliver cholesterol to the receptor-targeted lymphoma cells.

Initial experiments with lymphoma cells growing in culture showed that these nanoparticles are taken up by cells that have the target (SR-B1) receptor and have the desired effect of triggering programmed cell death, also known as apoptosis. They also demonstrated that apoptosis resulted from cholesterol flowing out of the cells. In contrast, the biomimetic HDL nanoparticles did not trigger cholesterol outflow from or apoptosis in normal human liver cells, macrophages, or lymphocytes.

Drs. Thaxton and Gordon and their collaborators then treated mice with human lymphomas with the biomimetic HDL nanoparticles. This treatment stopped tumor growth when the tumors were derived from lymphoma cells that expressed SR-B1, but had no effect on tumors derived from SR-B1 negative cells. The researchers note that because SR-B1 is not expressed in the majority of human tissue that the toxicity of these nanoparticles may be minimal compared to conventional chemotherapeutics.

####

About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "Biomimetic, synthetic HDL nanostructures for lymphoma."

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Nanomedicine

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project