Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > U of T Engineering breakthrough promises significantly more efficient solar cells

Abstract:
A new technique developed by University of Toronto Engineering Professor Ted Sargent and his research group could lead to significantly more efficient solar cells, according to a recent paper published in the journal Nano Letters.

U of T Engineering breakthrough promises significantly more efficient solar cells

Toronto, Canada | Posted on March 7th, 2013

The paper, "Jointly-tuned plasmonic-excitonic photovoltaics using nanoshells," describes a new technique to improve efficiency in colloidal quantum dot photovoltaics, a technology which already promises inexpensive, more efficient solar cell technology. Quantum dot photovoltaics offers the potential for low-cost, large-area solar power - however these devices are not yet highly efficient in the infrared portion of the sun's spectrum, which is responsible for half of the sun's power that reaches the Earth.

The solution? Spectrally tuned, solution-processed plasmonic nanoparticles. These particles, the researchers say, provide unprecedented control over light's propagation and absorption.

The new technique developed by Sargent's group shows a possible 35 per cent increase in the technology's efficiency in the near-infrared spectral region, says co-author Dr. Susanna Thon. Overall, this could translate to an 11 per cent solar power conversion efficiency increase, she says, making quantum dot photovoltaics even more attractive as an alternative to current solar cell technologies.

"There are two advantages to colloidal quantum dots," Thon says. "First, they're much cheaper, so they reduce the cost of electricity generation measured in cost per watt of power. But the main advantage is that by simply changing the size of the quantum dot, you can change its light-absorption spectrum. Changing the size is very easy, and this size-tunability is a property shared by plasmonic materials: by changing the size of the plasmonic particles, we were able to overlap the absorption and scattering spectra of these two key classes of nanomaterials."

Sargent's group achieved the increased efficiency by embedding gold nanoshells directly into the quantum dot absorber film. Though gold is not usually thought of as an economical material, other, lower-cost metals can be used to implement the same concept proved by Thon and her co-workers.

She says the current research provides a proof of principle. "People have tried to do similar work but the problem has always been that the metal they use also absorbs some light and doesn't contribute to the photocurrent - so it's just lost light."

More work needs to be done, she adds. "We want to achieve more optimization, and we're also interested in looking at cheaper metals to build a better cell. We'd also like to better target where photons are absorbed in the cell - this is important photovoltaics because you want to absorb as many photons as you can as close to the charge collecting electrode as you possibly can."

The research is also important because it shows the potential of tuning nanomaterial properties to achieve a certain goal, says Paul Weiss, Director of the California NanoSystems Institute.

"This work is a great example of fulfilling the promise of nanoscience and nanotechnology," Weiss says. "By developing the means to tune the properties of nanomaterials, Sargent and his co-workers have been able to make significant improvements in an important device function, namely capturing a broader range of the solar spectrum more effectively."

####

For more information, please click here

Contacts:
Terry Lavender
Communications & Media Relations Strategist
Faculty of Applied Science & Engineering
University of Toronto

416-978-4498

Copyright © University of Toronto Faculty of Applied Science & Engineeri

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Discoveries

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Announcements

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Quantum Dots/Rods

Quantum communications bend to our needs: By changing the wavelengths of entangled photons to those used in telecommunications, researchers see quantum technology take a major leap forward September 28th, 2017

Band Gaps, Made to Order: Engineers create atomically thin superlattice materials with precision September 26th, 2017

New approach on research and design for CQD catalysts in World Scientific NANO August 2nd, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

Solar/Photovoltaic

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project