Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Argonne licenses diamond semiconductor discoveries to AKHAN Technologies

This wafer of nanocrystalline diamond provides one example of the technology that AKHAN Technologies has licensed from Argonne. To view a larger version of the image, click on it. Photo courtesy Ani Sumant.
This wafer of nanocrystalline diamond provides one example of the technology that AKHAN Technologies has licensed from Argonne. To view a larger version of the image, click on it.

Photo courtesy Ani Sumant.

Abstract:
he U.S. Department of Energy's Argonne National Laboratory announced today that the laboratory has granted AKHAN Technologies exclusive diamond semiconductor application licensing rights to breakthrough low-temperature diamond deposition technology developed by Argonne's Center for Nanoscale Materials (CNM).

Argonne licenses diamond semiconductor discoveries to AKHAN Technologies

Lemont, IL | Posted on March 7th, 2013

The Argonne-developed technology allows for the deposition of nanocrystalline diamond on a variety of wafer substrate materials at temperatures as low as 400 degrees Celsius. The combination of the Argonne's low-temperature diamond technology with AKHAN's Miraj Diamond™ process represents the state of the art in diamond semiconductor thin-film technology.

"This licensing agreement gives us the impact of a one-two punch, in which we combine AKHAN's novel process to achieve efficient n-type doping in diamond with Argonne's low-temperature diamond deposition technology," said Argonne nanoscientist Anirudha Sumant. "This will break barriers that restricted the use of diamond thin films in the semiconductor industry limited to only p-type doping."

"This is an important step in the realization of a ‘Diamond Age,'" added Andreas Roelofs, Argonne's CNM Deputy Division Director and Industrial Relations Liaison. "It is always wonderful to see when basic materials research leads to promising new technology developments. Having a company license your technology is the best proof of showing that you are working on relevant questions."

AKHAN and Argonne are planning to develop this further through a Cooperative Research and Development Agreement (CRADA) initiative.

As part of a recent collaborative project, AKHAN and Argonne researchers were able to demonstrate working diamond devices with improved performance using the Miraj Diamond™ process based on conventional high temperature nanocrystalline diamond. AKHAN announced the availability of published characterization data of the company's Miraj Diamond™ technology in the Materials Research Society (MRS) Online Proceedings Library. In the paper, titled "On Enabling Nanocrystalline Diamond For Device Use: Novel Ion Beam Methodology and The Realization Of Shallow N-Type Diamond," AKHAN and Argonne researchers confirm breakthrough morphological, phase, and electrical characterization data for both n-type NCD wafer material and NCD PIN diode devices. The full paper is available through Cambridge Journals Online.

After many years of research and development, AKHAN Technologies, Inc., an Illinois Company, was formed in April 2007 by its founder, Adam Khan, to commercialize Diamond Lattice Technology. Commercial realization of diamond-based electron devices is the primary focus of AKHAN Technologies, Inc. Further, AKHAN Technologies, Inc., is committed to continually introducing the most advanced diamond device technology in both the digital and discrete markets to the global semiconductor community. With extensive diamond technology experience and a strong Board of Directors, AKHAN is well positioned to play an important role in enabling the "diamond age" of microelectronics. For more information, please visit the AKHAN Technologies website.

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The Center for Nanoscale Materials at Argonne National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), which are premier national user facilities for interdisciplinary research at the nanoscale and are supported by the DOE Office of Science. Together, the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials. The NSRCs constitute the largest infrastructure investment of the National Nanotechnology Initiative, and they are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit www.nano.gov.

For more information, please click here

Contacts:
Jared Sagoff
(630) 252-5549

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project