Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Argonne licenses diamond semiconductor discoveries to AKHAN Technologies

This wafer of nanocrystalline diamond provides one example of the technology that AKHAN Technologies has licensed from Argonne. To view a larger version of the image, click on it. Photo courtesy Ani Sumant.
This wafer of nanocrystalline diamond provides one example of the technology that AKHAN Technologies has licensed from Argonne. To view a larger version of the image, click on it.

Photo courtesy Ani Sumant.

Abstract:
he U.S. Department of Energy's Argonne National Laboratory announced today that the laboratory has granted AKHAN Technologies exclusive diamond semiconductor application licensing rights to breakthrough low-temperature diamond deposition technology developed by Argonne's Center for Nanoscale Materials (CNM).

Argonne licenses diamond semiconductor discoveries to AKHAN Technologies

Lemont, IL | Posted on March 7th, 2013

The Argonne-developed technology allows for the deposition of nanocrystalline diamond on a variety of wafer substrate materials at temperatures as low as 400 degrees Celsius. The combination of the Argonne's low-temperature diamond technology with AKHAN's Miraj Diamond™ process represents the state of the art in diamond semiconductor thin-film technology.

"This licensing agreement gives us the impact of a one-two punch, in which we combine AKHAN's novel process to achieve efficient n-type doping in diamond with Argonne's low-temperature diamond deposition technology," said Argonne nanoscientist Anirudha Sumant. "This will break barriers that restricted the use of diamond thin films in the semiconductor industry limited to only p-type doping."

"This is an important step in the realization of a ‘Diamond Age,'" added Andreas Roelofs, Argonne's CNM Deputy Division Director and Industrial Relations Liaison. "It is always wonderful to see when basic materials research leads to promising new technology developments. Having a company license your technology is the best proof of showing that you are working on relevant questions."

AKHAN and Argonne are planning to develop this further through a Cooperative Research and Development Agreement (CRADA) initiative.

As part of a recent collaborative project, AKHAN and Argonne researchers were able to demonstrate working diamond devices with improved performance using the Miraj Diamond™ process based on conventional high temperature nanocrystalline diamond. AKHAN announced the availability of published characterization data of the company's Miraj Diamond™ technology in the Materials Research Society (MRS) Online Proceedings Library. In the paper, titled "On Enabling Nanocrystalline Diamond For Device Use: Novel Ion Beam Methodology and The Realization Of Shallow N-Type Diamond," AKHAN and Argonne researchers confirm breakthrough morphological, phase, and electrical characterization data for both n-type NCD wafer material and NCD PIN diode devices. The full paper is available through Cambridge Journals Online.

After many years of research and development, AKHAN Technologies, Inc., an Illinois Company, was formed in April 2007 by its founder, Adam Khan, to commercialize Diamond Lattice Technology. Commercial realization of diamond-based electron devices is the primary focus of AKHAN Technologies, Inc. Further, AKHAN Technologies, Inc., is committed to continually introducing the most advanced diamond device technology in both the digital and discrete markets to the global semiconductor community. With extensive diamond technology experience and a strong Board of Directors, AKHAN is well positioned to play an important role in enabling the "diamond age" of microelectronics. For more information, please visit the AKHAN Technologies website.

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The Center for Nanoscale Materials at Argonne National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), which are premier national user facilities for interdisciplinary research at the nanoscale and are supported by the DOE Office of Science. Together, the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials. The NSRCs constitute the largest infrastructure investment of the National Nanotechnology Initiative, and they are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit www.nano.gov.

For more information, please click here

Contacts:
Jared Sagoff
(630) 252-5549

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Laboratories

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Scientists uncover origin of high-temperature superconductivity in copper-oxide compound: Analysis of thousands of samples reveals that the compound becomes superconducting at an unusually high temperature because local electron pairs form a 'superfluid' that flows without resist August 19th, 2016

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Thin films

Self-cleaning, anti-reflective, microorganism-resistant coatings: Researchers at the UPV/EHU-University of the Basque Country are modifying surface properties of materials to obtain specific properties at a lower cost August 9th, 2016

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Cambridge Advanced Imaging Centre praises support film consistency and quality from EM Resolutions July 5th, 2016

New nanomaterial offers promise in bendable, wearable electronic devices: Electroplated polymer makes transparent, highly conductive, ultrathin film June 13th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Chip Technology

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Announcements

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Patents/IP/Tech Transfer/Licensing

Industrial Nanotech, Inc. Provides Shareholder Update August 22nd, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic