Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > First discovery of a natural topological insulator

The mineral Kawazulite is a natural “topological insulator,” a material that could have applications in a new genre of supercomputers.

Credit: American Chemical Society
The mineral Kawazulite is a natural “topological insulator,” a material that could have applications in a new genre of supercomputers.

Credit: American Chemical Society

Abstract:
In a step toward understanding and exploiting an exotic form of matter that has been sparking excitement for potential applications in a new genre of supercomputers, scientists are reporting the first identification of a naturally occurring "topological insulator" (TI). Their report on discovery of the material, retrieved from an abandoned gold mine in the Czech Republic, appears in the ACS journal Nano Letters.

First discovery of a natural topological insulator

Washington, DC | Posted on March 6th, 2013

Pascal Gehring and colleagues point out that synthetic TIs, discovered only a decade ago, are regarded as a new horizon in materials science. Unlike conventional electrical insulators, which do not conduct electricity, TIs have the unique property of conducting electricity on their surface, while acting as an insulator inside. Although seemingly simple, this type of surface could allow manipulation of the spin of an electron, paving the way for development of a quantum computer. Such a computer would crunch data much faster than today's best supercomputers.

The research team describes discovering that the mineral Kawazulite, found in the Czech gold mine and processed into nanoflakes, is a natural TI. The flakes were so small that thousands would fit inside the dot over an "i." Based on the discovery, natural TIs may exist in other minerals, the report states. Scientists, they recall, once believed that quasi-crystals — topic of the 2011 Nobel Prize in Chemistry — were available only synthetically, but those materials recently were discovered in sky-fallen meteorites.

####

About American Chemical Society (ACS)
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Pascal Gehring
Max-Planck-Institut für Festkörperforschung
Heisenbergstrasse 1, D-70569 Stuttgart
Germany


Science Inquiries:
Michael Woods
editor

202-872-6293

General Inquiries:
Michael Bernstein

202-872-6042

Copyright © American Chemical Society (ACS)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Quantum Computing

The quantum middle man July 2nd, 2015

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Announcements

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Aerospace/Space

Evident Thermoelectrics Announces Launch of World's-First Thermoelectric Product Based on Skutterudite Material Technology July 7th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Discovery paves way for new kinds of superconducting electronics June 22nd, 2015

Deben reports on how the University of Portsmouth use in situ µXCT compressive testing to help answer how materials respond to complex loading conditions June 17th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project