Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New technique could improve optical devices

 The orientation of light emission	The angular distribution of light emission from monolayer MoS2, left, closely matches the theoretical calculations for in-plane oriented emitters, right, indicating that light emission from MoS2 originates from in-plane oriented emitters.	Credit: Zia lab/Brown University
The orientation of light emission The angular distribution of light emission from monolayer MoS2, left, closely matches the theoretical calculations for in-plane oriented emitters, right, indicating that light emission from MoS2 originates from in-plane oriented emitters.

Credit: Zia lab/Brown University

Abstract:
Understanding the source and orientation of light in light-emitting thin films — now possible with energy-momentum spectroscopy — could lead to better LEDs, solar cells, and other devices that use layered nanomaterials.

New technique could improve optical devices

Providence, RI | Posted on March 5th, 2013

A multi-university research team has used a new spectroscopic method to gain a key insight into how light is emitted from layered nanomaterials and other thin films.

The technique, called energy-momentum spectroscopy, enables researchers to look at the light emerging from a thin film and determine whether it is coming from emitters oriented along the plane of the film or from emitters oriented perpendicular to the film. Knowing the orientations of emitters could help engineers make better use of thin-film materials in optical devices like LEDs or solar cells.

The research, published online on March 3 in Nature Nanotechnology, was a collaborative effort of Brown University, Case Western Reserve University, Columbia University, and the University of California-Santa Barbara.

The new technique takes advantage of a fundamental property of thin films: interference. Interference effects can be seen in the rainbow colors visible on the surface of soap bubbles or oil slicks. Scientists can analyze how light constructively and destructively interferes at different angles to draw conclusions about the film itself — how thick it is, for example. This new technique takes that kind of analysis one step further for light-emitting thin films.

"The key difference in our technique is we're looking at the energy as well as the angle and polarization at which light is emitted," said Rashid Zia, assistant professor of engineering at Brown University and one of the study's lead authors. "We can relate these different angles to distinct orientations of emitters in the film. At some angles and polarizations, we see only the light emission from in-plane emitters, while at other angles and polarizations we see only light originating from out-of-plane emitters."

The researchers demonstrated their technique on two important thin-film materials, molybdenum disulfide (MoS2) and PTCDA. Each represents a class of materials that shows promise for optical applications. MoS2 is a two-dimensional material similar to graphene, and PTCDA is an organic semiconductor. The research showed that light emission from MoS2 occurs only from in-plane emitters. In PTCDA, light comes from two distinct species of emitters, one in-plane and one out-of-plane.

####

About Brown University
Once the orientation of the emitters is known, Zia says, it may be possible to design structured devices that maximize those directional properties. In most applications, thin-film materials are layered on top of each other. The orientations of emitters in each layer indicate whether electronic excitations are happening within each layer or across layers, and that has implications for how such a device should be configured.

“If you were making an LED using these layered materials and you knew that the electronic excitations were happening across an interface,” Zia said, “then there’s a specific way you want to design the structure to get all of that light out and increase its overall efficiency.”

The same concept could apply to light-absorbing devices like solar cells. By understanding how the electronic excitations happen in the material, it could be possible to structure it in a way that coverts more incoming light to electricity.

“One of the exciting things about this research is how it brought together people with different expertise,” Zia said. “Our group’s expertise at Brown is in developing new forms of spectroscopy and studying the electronic origin of light emission. The Kymissis group at Columbia has a great deal of expertise in organic semiconductors, and the Shan group at Case Western has a great deal of expertise in layered nanomaterials. Jon Schuller, the study’s first author, did a great job in bringing all this expertise together. Jon was a visiting scientist here at Brown, a postdoctoral fellow in the Energy Frontier Research Center at Columbia, and is now a professor at UCSB.”

Other authors on the paper were Sinan Karaveli (Brown), Theanne Schiros (Columbia), Keliang He (Case Western), Shyuan Yang (Columbia), Ioannis Kymissis (Columbia) and Jie Shan (Case Western). Funding for the work was provided by the Air Force Office of Scientific Research, the Department of Energy, the National Science Foundation, and the Nanoelectronic Research Initiative of the Semiconductor Research Corporation.

For more information, please click here

Contacts:
Kevin Stacey
401-863-3766

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Manipulating light inside opaque layers April 24th, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Thin films

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

Thin-film solar cells: How defects appear and disappear in CIGSe cells: Concentration of copper plays a crucial role April 23rd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Discoveries

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Announcements

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Tools

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

FEI Launches Apreo – Industry-Leading Versatile, High-Performance SEM: The Apreo SEM provides high-resolution surface information with excellent contrast, and the flexibility to accommodate a large range of samples, applications and conditions May 4th, 2016

Military

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Nanograft seeded with 3 cell types promotes blood vessel formation to speed wound healing April 27th, 2016

The light stuff: A brand-new way to produce electron spin currents - Colorado State University physicists are the first to demonstrate using non-polarized light to produce a spin voltage in a metal April 26th, 2016

Energy

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Nanoparticles present sustainable way to grow food crops May 1st, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Research partnerships

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Solar/Photovoltaic

A View Through Wood Shows Futuristic Applications: Transparent wood made at UMD could create new windows, cars and solar panels May 5th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

Manipulating light inside opaque layers April 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic