Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanobotmodels Company offer vision of cancer treatment using medical nanoparticles: This short animation shows how drug delivery methods working inside a human body

Abstract:
Cancer, is a broad group of various diseases, all involving unregulated cell growth. In cancer, cells divide and grow uncontrollably, forming malignant tumors, and invade nearby parts of the body. The cancer may also spread to more distant parts of the body through the lymphatic system or bloodstream. There are over 200 different known cancers that afflict humans.

Nanobotmodels Company offer vision of cancer treatment using medical nanoparticles: This short animation shows how drug delivery methods working inside a human body

Melitopol, Ukraine | Posted on March 4th, 2013

One out of every four deaths in the United States is from cancer. It is second only to heart disease as a cause of death in the states. About 1.2 million Americans are diagnosed with cancer annually; more than 500,000 die of cancer annually.

Cancer can attack anyone. Since the occurrence of cancer increases as individuals age, most of the cases are seen in adults, middle-aged or older. Sixty percent of all cancers are diagnosed in people who are older than 65 years of age. The most common cancers are skin cancer, lung cancer, colon cancer, breast cancer (in women), and prostate cancer (in men). In addition, cancer of the kidneys, ovaries, uterus, pancreas, bladder, rectum, and blood and lymph node cancer are also included among the 12 major cancers that affect most Americans.

Treatment and prevention of cancers continue to be the focus of a great deal of research. One of cancer treatment is chemotherapy. Is depends on using of drugs to kill cancer cells. It destroys the hard-to-detect cancer cells that have spread and are circulating in the body. Chemotherapeutic drugs can be taken either orally (by mouth) or intravenously, and may be given alone or in conjunction with surgery, radiation or both.

Nanobotmodels Company analyze all scientific progress and clinical tests to make models of nanomedical devices and drug delivery systems. In this animation DNA-origami shell nanoparticle can deliver doxorubicine molecules using specific oncomarkers.

Rapid nanotechnology development offer targeted drug delivery. This is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. The goal of a targeted drug delivery system is to prolong, localize, target and have a protected drug interaction only with the diseased tissue. The conventional drug delivery system is the absorption of the drug across a biological membrane, whereas the targeted release system is when the drug is released in a dosage form.

A nanoparticle coated by immune factor, it can prevent attacking nanoparticles by the immune cells. When the nanoparticle conjugate with several specific oncomarkers, it DNA-origami shell opens and doxorubicine flow in the cell's inner space.

Doxorubicin is one of the chemotherapeutic agents and is commonly used to treat some leukemias and Hodgkin's lymphoma, as well as cancers of the bladder, breast, stomach, lung, ovaries, thyroid, soft tissue sarcoma, multiple myeloma, and others.

Incide the cell doxorubicin interacts with DNA by intercalation and inhibition of macromolecular biosynthesis. This inhibits the progression of the enzyme topoisomerase II, which relaxes supercoils in DNA for transcription. Doxorubicin stabilizes the topoisomerase II complex after it has broken the DNA chain for replication, preventing the DNA double helix from being resealed and thereby stopping the process of replication.

In this type of chemotherapy healthy cells stays undamaged. After successfully drug delivery cancer cell dies.

####

About Nanobotmodels
Our company Nanobotmodels was founded in 2007 and it goal is develop modern art-science-technology intersections. Nanotechnology boost medicine, engineering, biotechnology, electronics soon, so artwork and vision of the nanofuture will be very useful.

We are making hi-end nanotechnology and nanomedicine illustration and animation. You can imagine any interesting to you animation, illustration or presentation materials, and we can make real.

For more information, please click here

Contacts:
common questions: info(at)nanobotmodels.com
sales and image permissions: sales(at)nanobotmodels.com

Copyright © Nanobotmodels

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full article text you can find here:

Related News Press

News and information

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Videos/Movies

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Molecular Machines

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

First 3-D observation of nanomachines working inside cells: Researchers headed by IRB Barcelona combine genetic engineering, super-resolution microscopy and biocomputation to allow them to see in 3-D the protein machinery inside living cells January 27th, 2017

Micro-bubbles make big impact: Research team develops new ultrasound-powered actuator to develop micro robot November 25th, 2016

Scientists come up with light-driven motors to power nanorobots of the future: Researchers from Russia and Ukraine propose a nanosized motor controlled by a laser with potential applications across the natural sciences and medicine November 11th, 2016

Nanomedicine

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Arrowhead Hosts Investor & Analyst R&D Day to Introduce TRiM(TM) Platform and Lead RNAi-based Drug Candidates September 14th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Announcements

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project