Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Renewable energy: Nanotubes to channel osmotic power

Diagram of the experimental principle: the osmotic transport of water through a transmembrane boron nitride nanotube. ©Laurent Joly (ILM)
Diagram of the experimental principle: the osmotic transport of water through a transmembrane boron nitride nanotube. ©Laurent Joly (ILM)

Abstract:
The salinity difference between fresh water and salt water could be a source of renewable energy. However, power yields from existing techniques are not high enough to make them viable. A solution to this problem may now have been found. A team led by physicists at the Institut Lumière Matière in Lyon (CNRS / Université Claude Bernard Lyon 1), in collaboration with the Institut Néel (CNRS), has discovered a new means of harnessing this energy: osmotic flow through boron nitride nanotubes generates huge electric currents, with 1,000 times the efficiency of any previous system. To achieve this result, the researchers developed a highly novel experimental device that enabled them, for the first time, to study osmotic fluid transport through a single nanotube. Their findings are published in the 28 February issue of Nature.

Renewable energy: Nanotubes to channel osmotic power

Paris, France | Posted on March 1st, 2013

When a reservoir of salt water is brought into contact with a reservoir of fresh water through a special kind of semipermeable membrane, the resulting osmotic phenomena make it possible to produce electricity from the salinity gradients. This can be done in two different ways: either the osmotic pressure differential between the two reservoirs can drive a turbine, or a membrane that only passes ions can be used to produce an electric current.

Concentrated at the mouths of rivers, the Earth's osmotic energy potential has a theoretical capacity of at least 1 terawatt - the equivalent of 1,000 nuclear reactors. However, the technologies available for harnessing this energy are relatively inefficient, producing only about 3 watts per square meter of membrane. Today, a team of physicists at the Institut Lumière Matière in Lyon (CNRS / Université Claude Bernard Lyon 1), in collaboration with the Institut Néel (CNRS), may have found a solution to overcome this obstacle.

Their primary goal was to study the dynamics of fluids confined in nanometric spaces, such as nanotubes. Drawing inspiration from biology and cell channel research, they achieved a world first in measuring the osmotic flow through a single nanotube. Their experimental device consisted of an impermeable and electrically insulating membrane pierced by a single hole through which the researchers, using the tip of a scanning tunneling microscope, inserted a boron nitride nanotube with an external diameter of a few dozen nanometers. Two electrodes immersed in the fluid on either side of the nanotube enabled them to measure the electric current passing through the membrane..

Using this membrane to separate a salt water reservoir and a fresh water reservoir, the team was able to generate a massive electric current through the nanotube, induced by the strong negative surface charge characteristic of boron nitride nanotubes, which attracts the cations contained in the salt water. The intensity of the current passing through the nanotube was on the order of the nanoampere, more than 1,000 times the yield of the other known techniques for retrieving osmotic energy.

Boron nitride nanotubes thus provide an extremely efficient solution for converting the energy of salinity gradients into immediately usable electrical power. Extrapolating these results to a larger scale, a 1-m2 boron nitride nanotube membrane should have a capacity of about 4 kW and be capable of generating up to 30 megawatt-hours (1) per year. This performance is three orders of magnitude greater than that of the prototype osmotic power plants currently in operation. The next step for the researchers in the project will be to study the production of membranes made of boron nitride nanotubes and test the performances of nanotubes made from other materials.

This project was made possible largely through the support of the ERC and ANR.

(1) One watt-hour corresponds to the energy consumed or delivered by a system with a power of 1 watt for one hour.

Full bibliographic information

Giant osmotic energy conversion measured in a single transmembrane boron-nitride nanotube, Alessandro Siria, Philippe Poncharal, Anne-Laure Biance, Rémy Fulcrand, Xavier Blase, Stephen Purcell, and Lydéric Bocquet, Nature. 28 février 2013.

####

For more information, please click here

Contacts:
Chercheur
Lydéric Bocquet
T +33 (0)4 72 44 82 53


Alessandro Siria


Presse
CNRS
Priscilla Dacher
T +33 (0)1 44 96 46 06

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Govt.-Legislation/Regulation/Funding/Policy

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

Nanotubes/Buckyballs/Fullerenes

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

World's most powerful X-ray takes a 'sledgehammer' to molecules September 14th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

For first time, carbon nanotube transistors outperform silicon September 8th, 2016

Discoveries

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Announcements

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Energy

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

Water

Atomic scale pipes available on demand and by design September 9th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

SLAC, Stanford gadget grabs more solar energy to disinfect water faster: Plopped into water, a tiny device triggers the formation of chemicals that kill microbes in minutes August 15th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Research partnerships

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic