Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Renewable energy: Nanotubes to channel osmotic power

Diagram of the experimental principle: the osmotic transport of water through a transmembrane boron nitride nanotube. ©Laurent Joly (ILM)
Diagram of the experimental principle: the osmotic transport of water through a transmembrane boron nitride nanotube. ©Laurent Joly (ILM)

Abstract:
The salinity difference between fresh water and salt water could be a source of renewable energy. However, power yields from existing techniques are not high enough to make them viable. A solution to this problem may now have been found. A team led by physicists at the Institut Lumière Matière in Lyon (CNRS / Université Claude Bernard Lyon 1), in collaboration with the Institut Néel (CNRS), has discovered a new means of harnessing this energy: osmotic flow through boron nitride nanotubes generates huge electric currents, with 1,000 times the efficiency of any previous system. To achieve this result, the researchers developed a highly novel experimental device that enabled them, for the first time, to study osmotic fluid transport through a single nanotube. Their findings are published in the 28 February issue of Nature.

Renewable energy: Nanotubes to channel osmotic power

Paris, France | Posted on March 1st, 2013

When a reservoir of salt water is brought into contact with a reservoir of fresh water through a special kind of semipermeable membrane, the resulting osmotic phenomena make it possible to produce electricity from the salinity gradients. This can be done in two different ways: either the osmotic pressure differential between the two reservoirs can drive a turbine, or a membrane that only passes ions can be used to produce an electric current.

Concentrated at the mouths of rivers, the Earth's osmotic energy potential has a theoretical capacity of at least 1 terawatt - the equivalent of 1,000 nuclear reactors. However, the technologies available for harnessing this energy are relatively inefficient, producing only about 3 watts per square meter of membrane. Today, a team of physicists at the Institut Lumière Matière in Lyon (CNRS / Université Claude Bernard Lyon 1), in collaboration with the Institut Néel (CNRS), may have found a solution to overcome this obstacle.

Their primary goal was to study the dynamics of fluids confined in nanometric spaces, such as nanotubes. Drawing inspiration from biology and cell channel research, they achieved a world first in measuring the osmotic flow through a single nanotube. Their experimental device consisted of an impermeable and electrically insulating membrane pierced by a single hole through which the researchers, using the tip of a scanning tunneling microscope, inserted a boron nitride nanotube with an external diameter of a few dozen nanometers. Two electrodes immersed in the fluid on either side of the nanotube enabled them to measure the electric current passing through the membrane..

Using this membrane to separate a salt water reservoir and a fresh water reservoir, the team was able to generate a massive electric current through the nanotube, induced by the strong negative surface charge characteristic of boron nitride nanotubes, which attracts the cations contained in the salt water. The intensity of the current passing through the nanotube was on the order of the nanoampere, more than 1,000 times the yield of the other known techniques for retrieving osmotic energy.

Boron nitride nanotubes thus provide an extremely efficient solution for converting the energy of salinity gradients into immediately usable electrical power. Extrapolating these results to a larger scale, a 1-m2 boron nitride nanotube membrane should have a capacity of about 4 kW and be capable of generating up to 30 megawatt-hours (1) per year. This performance is three orders of magnitude greater than that of the prototype osmotic power plants currently in operation. The next step for the researchers in the project will be to study the production of membranes made of boron nitride nanotubes and test the performances of nanotubes made from other materials.

This project was made possible largely through the support of the ERC and ANR.

(1) One watt-hour corresponds to the energy consumed or delivered by a system with a power of 1 watt for one hour.

Full bibliographic information

Giant osmotic energy conversion measured in a single transmembrane boron-nitride nanotube, Alessandro Siria, Philippe Poncharal, Anne-Laure Biance, Rémy Fulcrand, Xavier Blase, Stephen Purcell, and Lydéric Bocquet, Nature. 28 février 2013.

####

For more information, please click here

Contacts:
Chercheur
Lydéric Bocquet
T +33 (0)4 72 44 82 53


Alessandro Siria


Presse
CNRS
Priscilla Dacher
T +33 (0)1 44 96 46 06

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Could a demon help to create a quantum computer? Physicists implement a version of Maxwell's famous thought experiment for reducing entropy September 5th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Graphene nanotubes outperform ammonium salts and carbon black in PU applications September 11th, 2018

S, N co-doped carbon nanotube-encapsulated CoS2@Co: Efficient and stable catalysts for water splitting September 10th, 2018

Peering into private life of atomic clusters -- using the world's tiniest test tubes September 6th, 2018

Discoveries

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Announcements

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Energy

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

S, N co-doped carbon nanotube-encapsulated CoS2@Co: Efficient and stable catalysts for water splitting September 10th, 2018

September 5th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Water

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

S, N co-doped carbon nanotube-encapsulated CoS2@Co: Efficient and stable catalysts for water splitting September 10th, 2018

Producing hydrogen from splitting water without splitting hairs: New model explains interactions between small copper clusters used as low-cost catalysts in the production of hydrogen by breaking down water molecules August 31st, 2018

Research partnerships

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project