Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Improving Energy Storage: Neutron Scattering Technique Provides New Data on Adsorption of Ions in Microporous Materials

This schematic shows the experimental setup for in-situ studies of ion adsorption on the surface of microporous carbon electrodes. Credit: Gleb Yushin
This schematic shows the experimental setup for in-situ studies of ion adsorption on the surface of microporous carbon electrodes.

Credit: Gleb Yushin

Abstract:
The adsorption of ions in microporous materials governs the operation of technologies as diverse as water desalination, energy storage, sensing and mechanical actuation. Until now, however, researchers attempting to improve the performance of these technologies haven't been able to directly and unambiguously identify how factors such as pore size, pore surface chemistry and electrolyte properties affect the concentration of ions in these materials as a function of the applied potential.

Improving Energy Storage: Neutron Scattering Technique Provides New Data on Adsorption of Ions in Microporous Materials

Atlanta, GA | Posted on February 28th, 2013

To provide the needed information, researchers at the Georgia Institute of Technology and the Oak Ridge National Laboratory have demonstrated that a technique known as small angle neutron scattering (SANS) can be used to study the effects of ions moving into nanoscale pores. Believed to be the first application of the SANS technique for studying ion surface adsorption in-situ, details of the research were reported recently in the journal Angewandte Chemie International Edition.

Using conductive nanoporous carbon, the researchers conducted proof-of-concept experiments to measure changes in the adsorption of hydrogen ions in pores of different sizes within the same material due to variations in solvent properties and applied electrical potential. Systematic studies performed with such a technique could ultimately help identify the optimal pore size, surface chemistry and electrolyte solvent properties necessary for either maximizing or minimizing the adsorption of ions under varying conditions.

"We need to understand this system better so we can predict the kind of surface chemistry required and the kinds of solvents needed to control the levels of ion penetration and adsorption in pores of different sizes," said Gleb Yushin, an associate professor in the Georgia Tech School of Materials Science and Engineering. "Understanding these processes better could lead to the development of improved energy storage, water purification and desalination systems. This new experimental methodology may also give us paths to better understand ion transport in biological systems and contribute to the development of improved drugs and artificial organs."

The research was supported partially by the U.S. Army Research Office, the Georgia Institute of Technology and the Oak Ridge National Laboratory (ORNL).

"The advantage of neutron scattering is that it can be used to study real systems," said Yushin. "You can study most electrode materials and electrolyte combinations as long as they have a high sensitivity for neutron scattering."

Yushin and his collaborators - Georgia Tech graduate research assistant Sofiane Boukhalfa, and Oak Ridge scientists Yuri Melnichenko and Lilin He - conducted the research using ORNL's High Flux Isotope Reactor, which produces a beam of high-energy neutrons. Their experimental setup allowed them to immerse activated carbon fabric samples - each sample containing pores of different sizes - in different electrolyte materials while varying the applied electrical potential.

By measuring how the neutron beam was scattered when it passed through the carbon fabric and electrolytes, the researchers could determine how the solvent, pore size and electrical potential affected the average ion concentration in the carbon material samples.

"You can learn whether the ions get adsorbed into small pores or large pores by simply comparing the changes in the neutron scattering," Yushin explained. "This experimental technique allows us to independently change the surface chemistry to see how that affects the ion concentrations, and we can use different solvents to observe how the interaction between electrolyte and pore walls affects the ion adsorption in pores of different sizes. We can further identify exactly where the ion adsorption takes place even when no potential is applied to an electrode."

Earlier work in this area had not provided clear results.

"There have been multiple prior studies on the pore size effect, but different research groups worldwide have obtained contradictory results depending on the material selection and the model used to determine the specific surface area and pore size distribution in carbon electrodes," Yushin said. "Neutron scattering should help us clarify existing controversies. We have already observed that depending on the solvent-pore wall interactions, either enhanced or reduced ion electro-adsorption may take place in sub-nanometer pores."

In their experiments, the researchers used two different electrolytes: water containing sulfuric acid and deuterium oxide - also known as heavy water - which also contained sulfuric acid. The two were chosen for the proof-of-concept experiments, though a wide range of other hydrogen-containing electrolytes could also be used.

Now that the technique has been shown to work, Yushin would like to expand the experimentation to develop better fundamental understanding about the complex interactions of solvent, ions and pore walls under applied potential. That could allow development of a model that could guide the design of future systems that depend on ion transport and adsorption.

"Once you gain the fundamental knowledge from SANS experiments, predictive theoretical models could be developed that would guide the synthesis of the optimal structures for these applications," he said. "Once you clearly understand the structure-property relationships, you can use materials science approaches to design and synthesize the optimal material with the desired properties."

Information developed through the research could lead to improvements in supercapacitors and hybrid battery-capacitor devices for rapidly growing applications in hybrid electrical vehicles, energy efficient industrial equipment, smart grid-distributed energy storage, hybrid-electric and electrical ships, high-power energy storage for wind power and uninterruptible power supplies.

This research was partially supported by the Georgia Institute of Technology and the U.S. Army Research Office under contract number W911NF-12-1-0259. The research at ORNL's High Flux Isotope Reactor was sponsored by the Laboratory Directed Research and Development Program and the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The conclusions are those of the authors and do not necessarily reflect the official positions of the U.S. Army Research Office or the Department of Energy.

####

For more information, please click here

Contacts:
Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia 30332-0181

John Toon
404-894-6986

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

CITATION: Boukhalfa, S., et al., “Small-Angle Neutron Scattering for In Situ Probing of Ion Adsorption Inside Micropores.” Angew. Chem. Int. Ed (2013):

Related News Press

News and information

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Chemistry

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Nanosorbent Produced in Iran to Adsorb Tiny Amounts of Aromatic Hydrocarbon from Seawater May 18th, 2015

Science and Technology of Advanced Materials (STAM): Reported successes and failures aid hot pursuit of superconductivity May 15th, 2015

Laboratories

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Marine/Watercraft

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

BRAAVOO will design an unmanned surveying vessel and marine buoy that carry biosensors to monitor marine pollutants November 12th, 2014

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Engineered proteins stick like glue — even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

Nanomedicine

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Effective Nano-Micelles Designed in Iran to Treat Cancer May 20th, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Sensors

Record high sensitive Graphene Hall sensors May 21st, 2015

Graphene enables tunable microwave antenna May 15th, 2015

Janusz Bryzek Joins MEMS Industry Group to Lead New TSensors Division - New Division will Focus on Accelerating Development of Emerging Ultra-high Volume Sensors Supporting Abundance, mHealth and IoT May 14th, 2015

Nano-policing pollution May 13th, 2015

Discoveries

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Announcements

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Tools

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

DELMIC announces a workshop hosted by Phenom World on Integrated CLEM to be held on Wednesday June 24th at the Francis Crick Institute (Lincoln Inn Fields Laboratory). May 19th, 2015

DiATOME enables surface preparation for AFM and FIB May 19th, 2015

Military

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

Energy

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Industrial Nanotech, Inc. Announces Official Launch of the Eagle Platinum Tile™ May 19th, 2015

FEI and Weatherford Enter Into Joint Agreement for Advanced Reservoir Characterization Services May 18th, 2015

Water

Nanosorbent Produced in Iran to Adsorb Tiny Amounts of Aromatic Hydrocarbon from Seawater May 18th, 2015

Iran Unveils New Home-Made Medicines, Nanotechnology Products May 14th, 2015

Plugging up leaky graphene: New technique may enable faster, more durable water filters May 7th, 2015

Production of Industrial Nano-Membrane for Water, Wastewater Purification Device in Iran May 2nd, 2015

Automotive/Transportation

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

Penn and UC Merced researchers match physical and virtual atomic friction experiments May 8th, 2015

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Evident Thermoelectrics Acquires GMZ Energy: Investment Accelerates Launch Of Evident's Thermoelectric Modules For Waste Heat May 20th, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project