Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Changing Shape Makes Chemotherapy Drugs Better at Targeting Cancer Cells: Researchers at UC Santa Barbara find that making anti-cancer drug particles rod-shaped significantly increases their ability to target and inhibit breast cancer cells

Abstract:
Bioengineering researchers at University of California, Santa Barbara have found that changing the shape of chemotherapy drug nanoparticles from spherical to rod-shaped made them up to 10,000 times more effective at specifically targeting and delivering anti-cancer drugs to breast cancer cells.



Changing Shape Makes Chemotherapy Drugs Better at Targeting Cancer Cells from UCSB Engineering on Vimeo.

Changing Shape Makes Chemotherapy Drugs Better at Targeting Cancer Cells: Researchers at UC Santa Barbara find that making anti-cancer drug particles rod-shaped significantly increases their ability to target and inhibit breast cancer cells

Santa Barbara, CA | Posted on February 27th, 2013

Their findings could have a game-changing impact on the effectiveness of anti-cancer therapies and reducing the side effects of chemotherapy, according to the researchers. Results of their study were published recently in Proceedings of the National Academy of Sciences.

[Illustration: Rod-shaped chemotherapy drug nanoparticles bind more efficiently to receptors on cancer cells. Credit: Peter Allen]

"Conventional anti-cancer drugs accumulate in the liver, lungs and spleen instead of the cancer cell site due to inefficient interactions with the cancer cell membrane," explained Samir Mitragotri , professor of chemical engineering and Director of the Center for BioEngineering at UCSB. "We have found our strategy greatly enhances the specificity of anti-cancer drugs to cancer cells."

To engineer these high-specificity drugs, they formed rod-shaped nanoparticles from a chemotherapeutic drug, camptothecin, and coated them with an antibody called trastuzumab that is selective for certain types of cancer cells, including breast cancer. The antibody-coated camptothecin nanorods were 10,000-fold more effective than tratsuzumab alone and 10-fold more effective than camptothecin alone at inhibiting breast cancer cell growth.

"This unique approach of engineering shapes of anti-cancer drugs and combining them with antibodies represents new direction in chemotherapy," Mitragotri added.

Mitragotri and collaborators at UCSB, including post-doctoral researchers Sutapa Barua and Jin-Wook Yoo, and former graduate student Poornima Kolhar, looked to human breast cancer cells to examine how shape works in synergy with molecular recognition to perform complex tasks within the human body.

"We were inspired to look at the shape as a key parameter by natural objects. In nature, all key particles such as viruses, bacteria, red blood cells, platelets are non-spherical," said Mitragotri. "Their shape plays a key role in their function."

Their research was performed in collaboration with Yatin Gokarn and Aditya Wakankar of Genentech, a member of the Roche group. "The work of Professor Mitragotri and his collaborators exemplifies the groundbreaking contributions bioengineers at UC Santa Barbara are making in medical research, and of how our model of industry partnership delivers results," said Rod Alferness, Dean of the College of Engineering.

The study was completed with support from Genentech, the UC Discovery Program, and the Daryl and Marguerite Errett Discovery Award in Biomedical Research.

####

For more information, please click here

Contacts:
Melissa Van De Werfhorst

Copyright © University of California - Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Study results published in PNAS:

Mitragotri Lab Website:

Video: Interview with UCSB bioengineering researchers:

Related News Press

News and information

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

Ultra-Low Frequency Vibration Isolation Stabilizes Scanning Tunneling Microscopy at UCLA’s Nano-Research Group August 28th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Videos/Movies

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

New Method Provides Nanoscale Details of Electrochemical Reactions in Electric Vehicle Battery Materials August 4th, 2014

Nanomedicine

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

PetLife Comments on CNN Story on Scorpion Venom Health Benefits August 27th, 2014

The thunder god vine, assisted by nanotechnology, could shake up future cancer treatment: Targeted therapy for hepatocellular carcinoma using nanotechnology August 27th, 2014

Introducing the multi-tasking nanoparticle: Versatile particles offer a wide variety of diagnostic and therapeutic applications August 26th, 2014

Discoveries

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

The thunder god vine, assisted by nanotechnology, could shake up future cancer treatment: Targeted therapy for hepatocellular carcinoma using nanotechnology August 27th, 2014

Scientists craft atomically seamless, thinnest-possible semiconductor junctions August 26th, 2014

Announcements

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

Ultra-Low Frequency Vibration Isolation Stabilizes Scanning Tunneling Microscopy at UCLA’s Nano-Research Group August 28th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Oxford Instruments Asylum Research Receives the 2014 Microscopy Today Innovation Award for blueDrive Photothermal Excitation August 18th, 2014

AQUANOVA receives Technology Leadership Award 2014 FROST & SULLIVAN honors NovaSOL® Technology again August 12th, 2014

Focal blood-brain-barrier disruption with high-frequency pulsed electric fields August 12th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE