Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researcher finds faster, more efficient technique for creating high-density ceramics

Abstract:
"New mechanism for field-assisted processing and flash sintering of materials"

Author: Jay Narayan, North Carolina State University

Published: Online February 2013, Scripta Materialia

Abstract: We propose a unified mechanism for field-assisted phenomena such as enhanced rapid flash sintering, reduction in flow stress and grain growth retardation. It is argued that that defect segregation causes enhanced ionic and electronic transport along dislocations and grain boundaries, which leads to enhanced mobility of dislocations and their selective joule heating. This selective heating, if uncontrolled, can lead to an avalanche and selective melting of grain boundaries, which we propose as the primary mechanism for flash sintering of oxides.

Researcher finds faster, more efficient technique for creating high-density ceramics

Raleigh, NC | Posted on February 27th, 2013

A researcher from North Carolina State University has developed a technique for creating high-density ceramic materials that requires far lower temperatures than current techniques - and takes less than a second, as opposed to hours. Ceramics are used in a wide variety of technologies, including body armor, fuel cells, spark plugs, nuclear rods and superconductors.

At issue is a process known as "sintering," which is when ceramic powders (such as zirconia) are compressed into a desired shape and exposed to high heat until the powder particles are bound together into a solid, but slightly porous, material. But new research from Dr. Jay Narayan, John C. Fan Distinguished Chair Professor of Materials Science and Engineering at NC State, may revolutionize the sintering process.

Narayan's new technique, selective-melt sintering, allows sintering of yttria-stabilized zirconia at 800 degrees Celsius (C) - instead of the conventional 1450 C. In addition, using the selective-melt sintering technique, it is possible to sinter zirconia at 800 C in less than a second, and create a material with no porosity at all. In contrast, traditional sintering techniques take four to five hours at 1450 C.

"This technique allows you to achieve ‘theoretical density,' meaning it eliminates all of the porosity in the material," Narayan says. "This increases the strength of the ceramic, as well as improving its optical, magnetic and other properties."

The key to Narayan's approach is the application of an electric field, at approximately 100 volts per centimeter, to the material. When this field is applied, it creates subtle changes in the material's "grain boundaries" - where atoms from different crystals meet in the material. Namely, the field draws "defects" to the grain boundary. These defects consist of vacancies (missing atoms) which can carry charges. The defects are negatively charged and draw current from the electric field to the area - which raises the temperature along the grain boundary.

Raising the temperature along the grain boundary means that the material can be sintered at a much lower temperature, because sintering is done by selectively melting the grain boundaries to fuse the crystals together.

Normally you would have to apply enough heat to raise the mass of all the material to the melting point, even though you only need to melt the grain boundary. "Pre-heating" the grain boundary with an electric field is what allowed Narayan to lower the sintering temperature from 1450 C to 800 C and sinter the material much more quickly.

####

For more information, please click here

Contacts:
Matt Shipman

919-515-6386

Dr. Jay Narayan

919.515.7874

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

n invited viewpoint paper describing the work, “New mechanism for field-assisted processing and flash sintering of materials,” is published online in Scripta Materialia. Narayan is the sole author:

Related News Press

News and information

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Superconductivity

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Flashes of light on the superconductor: Using light to modulate the properties of a copper-based superconductor July 15th, 2014

Discoveries

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Materials/Metamaterials

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Synthesis of Nanostructures with Controlled Shape, Size in Iran September 22nd, 2014

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

Announcements

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Military

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Energy

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Automotive/Transportation

Next-Gen Luxury RV From Global Caravan Technologies Will Offer MagicView Roof and Windshield Using SPD-SmartGlass Technology From Research Frontiers: Recreational Vehicle Manufacturer Global Caravan Technologies (GCT) Features 28 Square Feet of MagicView™ SPD-SmartGlass September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Fuel Cells

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

Media Advisory: Minister Rempel to Announce Support for Alberta's Nanotechnology Sector June 20th, 2014

Evolution of a Bimetallic Nanocatalyst June 6th, 2014

University of Surrey collaborates with India and Tata Steel to revolutionise renewable energy March 26th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE