Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Anasys reports on NIST announcement illustrating chemical composition with nanoscale resolution using AFM-IR

The sample (green/white) absorbs infrared laser light (purple) at wavelengths determined by its chemical composition, causing it to expand, which deflects the AFM cantilever. Bottom left: The AFM detects the height of two small polystyrene particles and a large polymethylmethacrylate (PMMA) particle. Bottom right: The light is tuned to be absorbed only by PMMA but not by polystyrene. Combining the data and recording chemical images at different wavelengths produces a map of the surface's topography and chemistry.

Image Credit: Centrone/NIST - used with permission
The sample (green/white) absorbs infrared laser light (purple) at wavelengths determined by its chemical composition, causing it to expand, which deflects the AFM cantilever. Bottom left: The AFM detects the height of two small polystyrene particles and a large polymethylmethacrylate (PMMA) particle. Bottom right: The light is tuned to be absorbed only by PMMA but not by polystyrene. Combining the data and recording chemical images at different wavelengths produces a map of the surface's topography and chemistry.

Image Credit: Centrone/NIST - used with permission

Abstract:
Anasys Instruments reports on the NIST announcement in their Tech Beat publication which describes the work of Andrea Centrone and his colleagues demonstrating the use of AFM-IR for chemical composition studies at nanoscale resolution.

Anasys reports on NIST announcement illustrating chemical composition with nanoscale resolution using AFM-IR

Santa Barbara, CA | Posted on February 27th, 2013

The latest work from NIST researchers applying photothermal induced resonance (PTIR), a technique also referred to as AFM-IR, has just been reported in NIST's newsletter, Tech Beat.

Photothermal induced resonance (PTIR) has recently attracted great interest for enabling chemical identification and imaging with nanoscale resolution. In this paper, electron beam nanopatterned polymer samples are fabricated directly on 3D zinc selenide prisms and used to experimentally evaluate the PTIR lateral resolution, sensitivity and linearity. The authors have shown that PTIR lateral resolution for chemical imaging is comparable to the lateral resolution obtained in the atomic force microscopy height images, up to the smallest feature measured (100 nm). Spectra and chemical maps are produced from the thinnest sample analyzed (40 nm). More importantly, experiments show for the first time that the PTIR signal increases linearly with thickness for samples up to ≈ 1 μm (linearity limit). This is necessary if the PTIR technique is to be used for quantitative chemical analysis at the nanoscale.

Their analysis of thicker samples provides the first evidence that the previously- developed PTIR signal generation theory is correct. It is believed that the findings of this work will foster nanotechnology development in disparate applications by proving the basis for quantitative chemical analysis with nanoscale resolution. Speaking of the importance of this work, Dr Centrone said "What's extraordinary is that we can see that the chemical map is not necessarily correlated to the height or size of the physical features on the sample surface. We get independent details of both the surface's physical features and its chemical properties. This result is unmatched by other near-field techniques."

These views are echoed by Anasys CTO, Dr Craig Prater. He says "We are excited by this excellent work by Dr Centrone and his co-workers. We applaud NIST's research and involvement in advancing nanoscale characterization of materials using AFM-based spectroscopy."

####

About Anasys Instruments
Anasys Instruments is dedicated to delivering innovative products that measure material properties for samples with spatially varying physical and chemical properties at the nanoscale. Anasys introduced the nano-TA in 2006 which pioneered the field of nanoscale thermal property measurement. In 2010, Anasys introduced the award-winning breakthrough nanoIR™ Platform which pioneered the field of nanoscale IR measurement. Most recently, Anasys is proud to introduce the breakthrough Lorentz Force Contact Resonance, which pioneers the field of wideband nanomechanical spectroscopy.

For more information, please click here

Contacts:
Anasys contact:
Roshan Shetty
Anasys Instruments Corporation
121 Gray Avenue, Suite 100
Santa Barbara
CA 93101 USA
Tel: +1 (805) 730-3310
http://www.anasysinstruments.com/


Media contact:
Jezz Leckenby
Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA, UK
Tel +44 (0) 1799 521881
Mob +44 (0) 7843 012997
http://www.talking-science.com/

Copyright © Anasys Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Multi-million pound project to use nanotechnology to improve safety September 4th, 2015

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Tongfang Global and QD Vision Partner to Bring Wide Color Gamut to Global Television Lines: Color IQTM quantum dots help boost company’s focus on superior color reproduction September 3rd, 2015

QEOS and GLOBALFOUNDRIES to Offer Industry’s First CMOS Platform for MillimeterWave Markets: GLOBALSOLUTIONSSM Partnership will enable next-generation wireless technologies for applications in IoT, 5G and automotive September 3rd, 2015

Imaging

JEOL Introduces New Best-in-Class Field Emission SEM September 2nd, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

Laboratories

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Chemistry

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

Discoveries

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

QEOS and GLOBALFOUNDRIES to Offer Industry’s First CMOS Platform for MillimeterWave Markets: GLOBALSOLUTIONSSM Partnership will enable next-generation wireless technologies for applications in IoT, 5G and automotive September 3rd, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Announcements

Multi-million pound project to use nanotechnology to improve safety September 4th, 2015

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Tools

Oxford Instruments’ Triton Cryofree dilution refrigerator selected by Oxford University for developing scalable quantum nanodevices September 2nd, 2015

JEOL Introduces New Best-in-Class Field Emission SEM September 2nd, 2015

Atomic Force Microscopes from Asylum Research Guide the Development of Thin Film Deposition and Etch Processes September 2nd, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic