Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Anasys reports on NIST announcement illustrating chemical composition with nanoscale resolution using AFM-IR

The sample (green/white) absorbs infrared laser light (purple) at wavelengths determined by its chemical composition, causing it to expand, which deflects the AFM cantilever. Bottom left: The AFM detects the height of two small polystyrene particles and a large polymethylmethacrylate (PMMA) particle. Bottom right: The light is tuned to be absorbed only by PMMA but not by polystyrene. Combining the data and recording chemical images at different wavelengths produces a map of the surface's topography and chemistry.

Image Credit: Centrone/NIST - used with permission
The sample (green/white) absorbs infrared laser light (purple) at wavelengths determined by its chemical composition, causing it to expand, which deflects the AFM cantilever. Bottom left: The AFM detects the height of two small polystyrene particles and a large polymethylmethacrylate (PMMA) particle. Bottom right: The light is tuned to be absorbed only by PMMA but not by polystyrene. Combining the data and recording chemical images at different wavelengths produces a map of the surface's topography and chemistry.

Image Credit: Centrone/NIST - used with permission

Abstract:
Anasys Instruments reports on the NIST announcement in their Tech Beat publication which describes the work of Andrea Centrone and his colleagues demonstrating the use of AFM-IR for chemical composition studies at nanoscale resolution.

Anasys reports on NIST announcement illustrating chemical composition with nanoscale resolution using AFM-IR

Santa Barbara, CA | Posted on February 27th, 2013

The latest work from NIST researchers applying photothermal induced resonance (PTIR), a technique also referred to as AFM-IR, has just been reported in NIST's newsletter, Tech Beat.

Photothermal induced resonance (PTIR) has recently attracted great interest for enabling chemical identification and imaging with nanoscale resolution. In this paper, electron beam nanopatterned polymer samples are fabricated directly on 3D zinc selenide prisms and used to experimentally evaluate the PTIR lateral resolution, sensitivity and linearity. The authors have shown that PTIR lateral resolution for chemical imaging is comparable to the lateral resolution obtained in the atomic force microscopy height images, up to the smallest feature measured (100 nm). Spectra and chemical maps are produced from the thinnest sample analyzed (40 nm). More importantly, experiments show for the first time that the PTIR signal increases linearly with thickness for samples up to ≈ 1 μm (linearity limit). This is necessary if the PTIR technique is to be used for quantitative chemical analysis at the nanoscale.

Their analysis of thicker samples provides the first evidence that the previously- developed PTIR signal generation theory is correct. It is believed that the findings of this work will foster nanotechnology development in disparate applications by proving the basis for quantitative chemical analysis with nanoscale resolution. Speaking of the importance of this work, Dr Centrone said "What's extraordinary is that we can see that the chemical map is not necessarily correlated to the height or size of the physical features on the sample surface. We get independent details of both the surface's physical features and its chemical properties. This result is unmatched by other near-field techniques."

These views are echoed by Anasys CTO, Dr Craig Prater. He says "We are excited by this excellent work by Dr Centrone and his co-workers. We applaud NIST's research and involvement in advancing nanoscale characterization of materials using AFM-based spectroscopy."

####

About Anasys Instruments
Anasys Instruments is dedicated to delivering innovative products that measure material properties for samples with spatially varying physical and chemical properties at the nanoscale. Anasys introduced the nano-TA in 2006 which pioneered the field of nanoscale thermal property measurement. In 2010, Anasys introduced the award-winning breakthrough nanoIR™ Platform which pioneered the field of nanoscale IR measurement. Most recently, Anasys is proud to introduce the breakthrough Lorentz Force Contact Resonance, which pioneers the field of wideband nanomechanical spectroscopy.

For more information, please click here

Contacts:
Anasys contact:
Roshan Shetty
Anasys Instruments Corporation
121 Gray Avenue, Suite 100
Santa Barbara
CA 93101 USA
Tel: +1 (805) 730-3310
http://www.anasysinstruments.com/


Media contact:
Jezz Leckenby
Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA, UK
Tel +44 (0) 1799 521881
Mob +44 (0) 7843 012997
http://www.talking-science.com/

Copyright © Anasys Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Chemistry

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

New carbon nitride material coupled with ruthenium enhances visible-light CO2 reduction in water June 15th, 2017

Imaging

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

GLOBALFOUNDRIES Launches 7nm ASIC Platform for Data Center, Machine Learning, and 5G Networks FX-7TM offering leverages the company’s 7nm: FinFET process to deliver best in class IP and Solutions June 13th, 2017

Laboratories

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Discoveries

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tools

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

Changing the color of laser light on the femtosecond time scale: How BiCoO3 achieves second harmonic generation June 14th, 2017

Leti Announces Two New Tools for Improving Transportation Comfort, Safety and Efficiency: Wearable Device Measures Stress Responses for Travelers, Pilots and Truck Drivers, While Smartphone App Provides Transit Agencies Broad Data on Transport Modes June 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project