Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New synthesis method produces nanoparticles in high quantities

Abstract:
TiO2 nanoparticles are in increasingly high demand for a range of applications, including photocatalysts, photonic crystals, photovoltaic cells, gas sensors, fuel cells, pigments and cosmetics. Now researchers in Japan have demonstrated a new method for synthesis of TiO2 nanoparticles in large amounts.

New synthesis method produces nanoparticles in high quantities

Kanazawa, Japan | Posted on February 25th, 2013

Researchers have already used inductively coupled thermal plasmas (ICTPs) as a useful source of heat and chemicals in synthesis. These plasmas are forms of the chemical that have been ionised by energy produced by electric currents produced by fluctuating magnetic fields, so-called electromagnetic induction. However application of ICTPs in nanoparticle synthesis has met with difficulties in controlling the particle size.

Yasunori Tanaka and colleagues at Kanazawa University and Nisshin Seifun Group in Japan had previously modified the ICTP approach using a modulated current coil to give voltage pulses and other arbitrary waveforms. The modulated current provides a means of controlling the temperature and density of the chemical species during synthesis. Applying these pulse-modulated inductive thermal plasmas (PMITP) to TiO2 nanoparticle synthesis allowed control over the particle size and mineral phase. However, due to the latent heat of evaporation of the powders, there was a limit to how much the feed rate could be increased before the ICTP failed to evaporate all the powder.

Now the researchers have demonstrated that carefully timed intermittent feeding combined with gas quenching to synchronise with the pulse modulation of the induction thermal plasmas allowed oxidation of all the titanium into TiO2 nanoparticle even when synthesised in large amounts. They conclude, "The results indicated that the synthesized particles by the 20-kW PMITP with a heavy loading rate of 12.3 g/min had a similar particle size distribution with the mean diameter about 40 nm to those with light loading of 4.2 g/min."

1. Faculty of Electrical and Computer Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
2. Research Center for Production & Technology, Nisshin Seifun Group Inc.,5-3-1 Tsurugaoka, Fujimino 356-8511, Japan

*corresponding author, e-mail address:

####

For more information, please click here

Contacts:
Organization of Frontier Science and Innovation
Kanazawa University
Kakuma, Kanazawa, Ishikawa 920-1192, Japan

Copyright © Kanazawa University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication and Affiliation

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Sensors

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Leti Chief Scientist Barbara De Salvo Will Help Kick Off ISSCC 2018 with Opening-Day Keynote: In Addition, Leti Scientists Will Present and Demo New Technology for Piezoelectric Energy Harvesting February 8th, 2018

Engineers develop flexible, water-repellent graphene circuits for washable electronics January 24th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Discoveries

Basque researchers turn light upside down February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Materials/Metamaterials

Basque researchers turn light upside down February 23rd, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Energy

Round-the-clock power from smart bowties February 5th, 2018

Silk fibers could be high-tech ‘natural metamaterials’ January 31st, 2018

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

Personal Care/Cosmetics

Programmable materials find strength in molecular repetition May 23rd, 2016

Common nanoparticle has subtle effects on oxidative stress genes May 11th, 2016

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

New ORNL method could unleash solar power potential March 16th, 2016

Fuel Cells

Study boosts hope for cheaper fuel cells: Rice University researchers show how to optimize nanomaterials for fuel-cell cathodes January 6th, 2018

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Photonics/Optics/Lasers

Basque researchers turn light upside down February 23rd, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Solar/Photovoltaic

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project