Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Ultra-low power processor operates at near-threshold voltage

Abstract:
At this week's International Solid State Circuits Conference (ISSCC 2013), imec and Holst Centre presented an ultra-low power processor that operates reliably at near-threshold voltages. The processor delivers clock speeds up to 1MHz at voltages down to 0.4 V. In tests based on a Fast Fourier Transform use case, it consumed only 79 µW - a fraction of the power consumption at standard voltages.

Ultra-low power processor operates at near-threshold voltage

San Francisco, CA | Posted on February 21st, 2013

"Energy-efficient data processing will be vital for a wide range of emerging applications from Body Area Networks to building automation and equipment monitoring. Reducing active power consumption and standby leakage are thus increasingly important considerations for digital design," said Harmke de Groot, Program Director at Holst Centre/imec. "Yet much of the industry's research is still aimed at improving performance rather than increasing battery lifetime by higher energy efficiency. At Holst Centre, we focus on low power and low voltage to enable battery-powered and energy scavenging smart devices."

The new energy-efficient processor platform is customized for biomedical applications such as ECG and EEG monitoring. This was realized by creating an interface architecture around a general-purpose processor core to enable ultra-low voltage operation and automatic scaling of performance to improve energy efficiency, plus in-situ monitoring to guarantee reliability and high yield.

One of the key developments was the ability to reduce the operating voltage while delivering enough performance to meet application needs, and maintaining that performance over a range of operating voltages and temperatures. That was achieved by forward biasing the transistors within the processor, allowing it to operate at voltages just above the threshold for the CMOS process used. The operating voltage can be adjusted between the processor's nominal voltage of 1.1 V and a minimum voltage of 0.4 V depending on the current performance requirements.

Natural variations in manufacturing processes can lead to voltage fluctuations when a processor is being used. At near-threshold voltages, these fluctuations can be enough to stop the processer working. To avoid this and ensure reliability, the team connected "canary flip-flops" to the most timing-critical parts of the processor. These are designed to fail before the processor's circuits do and can be monitored - allowing the operating voltage to be scaled up before noise affects the processor. In addition, automatic bias control eliminates the usual voltage drop across the power switches that control the processor, further enhancing energy efficiency and reliability under near-threshold conditions.

To reduce energy consumption even further, the interface can control the state of individual components on the chip separately, for example turning off the processor core or reducing the voltage in the memory when these components are not required. The software interface can also dynamically switch the processor between various performance modes, optimizing the number of active functional units in the core to suit the algorithm being performed. Unused functional units are switched off to reduce power consumption.

####

About IMEC
Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China, India and Japan. Its staff of close to 2,000 people includes more than 600 industrial residents and guest researchers. In 2011, imec's revenue (P&L) was about 300 million euro. Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.) and imec India (Imec India Private Limited).

About Holst Centre

Holst Centre is an independent open-innovation R&D centre that develops generic technologies for Wireless Autonomous Transducer Solutions and for Systems-in-Foil. A key feature of Holst Centre is its partnership model with industry and academia around shared roadmaps and programs. It is this kind of cross-fertilization that enables Holst Centre to tune its scientific strategy to industrial needs.

Holst Centre was set up in 2005 by imec (Flanders, Belgium) and TNO (The Netherlands) with support from the Dutch Ministry of Economic Affairs and the Government of Flanders. It is named after Gilles Holst, a Dutch pioneer in Research and Development and first director of Philips Research. Located on High Tech Campus Eindhoven, Holst Centre benefits from the state-of-the-art on-site facilities. Holst Centre has over 180 employees from around 28 nationalities and a commitment from more than 45 industrial partners.

Visit us at www.holstcentre.com

For more information, please click here

Contacts:
Imec :
Hanne Degans
External Communications Officer
T: +32 16 28 17 69
Mobile: +32 486 06 51 75


Holst Centre :
Koen Snoeckx
Communication Manager
T: +31 40 40 20 561
M : +31 612 71 98 43


Olga Walsh
Business Technology
[ f o r m u l a ]
Formula PR, Inc.
1215 Cushman Avenue
San Diego, CA 92110
Office 619-234-0345 |

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

This release refers to the paper:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Events/Classes

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project