Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Balsam for the Bones - Chemists at the UDE develop a nanopaste for the repair of bone defects

The mode of action of the paste (photo  UDE)
The mode of action of the paste

(photo UDE)

Abstract:
Following accidents or cancer surgery surgeons often have to transplant healthy bone tissue or synthetic material to repair the resulting bone defects. Unfortunately, these procedures do not always have the desired effect.

Balsam for the Bones - Chemists at the UDE develop a nanopaste for the repair of bone defects

Duisburg, Germany | Posted on February 20th, 2013

Now a professor for inorganic chemistry, Matthias Epple was attracted to the interface between biology and medical science. "We have been investigating the impact of mineral tissue such as teeth, bone and sea shells for many years and are now using the knowledge we have gained to produce new biomaterials." To achieve this he has collaborated closely with medical scientists and his current project - carried out with three of his doctoral students - was no exception.

"The repair of bone defects presents a real challenge for surgeons," he relates. "When possible they collect the patient's own bone from various locations, such as the iliac crest, and implant it where needed to fill defects." The researcher explained that since there is only a limited amount of surplus bone material in the body, synthetic materials are now being used. "Calcium phosphate is a natural choice here since it is an inorganic mineral found in bones in the form of nanocrystals. It is a material familiar to the body, which makes it a suitable carrier." He added that the calcium and phosphate ions lead to improved new bone formation.

However, the use of synthetic materials creates a host of new problems: the bones heal more slowly, the risk of infection is greater and the mechanical stability is not ideal. Epple's team has now created a bone repair paste by coating synthetic nanocrystals of calcium phosphate with nucleic acids - in other words, with DNA. The professor explains what happens when this paste is injected into a bone defect: "The nanoparticles are taken up by cells. The calcium phosphate dissolves and the DNA that is released stimulates the formation of two proteins important for healing: BMP-7, which stimulates bone formation, and VEGF-A, which is responsible for the creation of new blood vessels. As a result, the new bone is supplied with valuable nutrients."

The UDE researchers expect that the paste will have a long-lasting effect since the nanoparticles are released successively and thus continuously stimulate the surrounding cells. They have demonstrated that the paste works in three different cell types. Further tests now have to be conducted. Epple and his co-researchers hope that "our development will be used several years from now in the field of traumatology and in the treatment of osteoporosis."

####

For more information, please click here

Contacts:
Ulrike Bohnsack
Tel. +49 (0) 203 379 2429

Prof. Dr. Matthias Epple
University of Duisburg-Essen
Tel. +49 (0) 201 183 2413

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The results of this research were recently published in the international journal RSC Advances:

Related News Press

News and information

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Nanomedicine

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Researchers revolutionize vital conservation tool with use of gold nanotechnology and lasers: Cryopreservation study results have sweeping implications for wildlife conservation and human health July 15th, 2017

Discoveries

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Announcements

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project