Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Balsam for the Bones - Chemists at the UDE develop a nanopaste for the repair of bone defects

The mode of action of the paste (photo © UDE)
The mode of action of the paste

(photo © UDE)

Abstract:
Following accidents or cancer surgery surgeons often have to transplant healthy bone tissue or synthetic material to repair the resulting bone defects. Unfortunately, these procedures do not always have the desired effect.

Balsam for the Bones - Chemists at the UDE develop a nanopaste for the repair of bone defects

Duisburg, Germany | Posted on February 20th, 2013

Now a professor for inorganic chemistry, Matthias Epple was attracted to the interface between biology and medical science. "We have been investigating the impact of mineral tissue such as teeth, bone and sea shells for many years and are now using the knowledge we have gained to produce new biomaterials." To achieve this he has collaborated closely with medical scientists and his current project - carried out with three of his doctoral students - was no exception.

"The repair of bone defects presents a real challenge for surgeons," he relates. "When possible they collect the patient's own bone from various locations, such as the iliac crest, and implant it where needed to fill defects." The researcher explained that since there is only a limited amount of surplus bone material in the body, synthetic materials are now being used. "Calcium phosphate is a natural choice here since it is an inorganic mineral found in bones in the form of nanocrystals. It is a material familiar to the body, which makes it a suitable carrier." He added that the calcium and phosphate ions lead to improved new bone formation.

However, the use of synthetic materials creates a host of new problems: the bones heal more slowly, the risk of infection is greater and the mechanical stability is not ideal. Epple's team has now created a bone repair paste by coating synthetic nanocrystals of calcium phosphate with nucleic acids - in other words, with DNA. The professor explains what happens when this paste is injected into a bone defect: "The nanoparticles are taken up by cells. The calcium phosphate dissolves and the DNA that is released stimulates the formation of two proteins important for healing: BMP-7, which stimulates bone formation, and VEGF-A, which is responsible for the creation of new blood vessels. As a result, the new bone is supplied with valuable nutrients."

The UDE researchers expect that the paste will have a long-lasting effect since the nanoparticles are released successively and thus continuously stimulate the surrounding cells. They have demonstrated that the paste works in three different cell types. Further tests now have to be conducted. Epple and his co-researchers hope that "our development will be used several years from now in the field of traumatology and in the treatment of osteoporosis."

####

For more information, please click here

Contacts:
Ulrike Bohnsack
Tel. +49 (0) 203 379 2429

Prof. Dr. Matthias Epple
University of Duisburg-Essen
Tel. +49 (0) 201 183 2413

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The results of this research were recently published in the international journal RSC Advances:

Related News Press

News and information

BSA Distinguished Lecture Tuesday, 10/14: 'LCLS: A Stunning New View Through X-ray Laser Eyes' September 23rd, 2014

Brookhaven Lab's National Synchrotron Light Source II Approved to Start Routine Operations: Milestone marks transition to exciting new chapter September 23rd, 2014

Immune system is key ally in cyberwar against cancer: Rice University study yields new two-step strategy for weakening cancer September 23rd, 2014

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Nanomedicine

Nanotubes help healing hearts keep the beat: Rice University, Texas Children’s Hospital patch for defects enhances electrical connections between cells September 23rd, 2014

Immune system is key ally in cyberwar against cancer: Rice University study yields new two-step strategy for weakening cancer September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Engineered proteins stick like glue — even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

Discoveries

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Nanotubes help healing hearts keep the beat: Rice University, Texas Children’s Hospital patch for defects enhances electrical connections between cells September 23rd, 2014

Immune system is key ally in cyberwar against cancer: Rice University study yields new two-step strategy for weakening cancer September 23rd, 2014

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Announcements

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Nanotubes help healing hearts keep the beat: Rice University, Texas Children’s Hospital patch for defects enhances electrical connections between cells September 23rd, 2014

Immune system is key ally in cyberwar against cancer: Rice University study yields new two-step strategy for weakening cancer September 23rd, 2014

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE