Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers say sunlight yields more efficient carbon dioxide to methanol model

A schematic illustration of the two-step synthesis of CuO-Cu2O hybrid nanorod arrays.
A schematic illustration of the two-step synthesis of CuO-Cu2O hybrid nanorod arrays.

Abstract:
Researchers from The University of Texas at Arlington are pioneering a new method for using carbon dioxide, or CO2, to make liquid methanol fuel by using copper oxide nanowires and sunlight.

Researchers say sunlight yields more efficient carbon dioxide to methanol model

Arlington, TX | Posted on February 20th, 2013

The process is safer, simpler and less expensive than previous methods to convert the greenhouse gas associated with climate change to a useful product, said Krishnan Rajeshwar, interim associate vice president for research at UT Arlington and one of the authors of a paper recently published in the journal Chemical Communications. Researchers began by coating the walls of copper oxide, CuO, nanorods with crystallites made from another form of copper oxide, Cu2O. In the lab, they submerged those rods in a water-based solution rich in CO2. Irradiating the combination with simulated sunlight created a photoelectrochemical reduction of the CO2 and that produced methanol.

In contrast, current methods require the use of a co-catalyst and must be conducted at high operating pressures and temperatures. Many also use toxic elements, such as cadmium, or rare elements, such as tellurium, Rajeshwar said.

"As long as we are using fossil fuels, we'll have the question of what to do with the carbon dioxide," said Rajeshwar, a distinguished professor of chemistry and biochemistry and co-founder of the Center for Renewable Energy, Science & Technology, CREST, at UT Arlington. "An attractive option would be to convert greenhouse gases to liquid fuel. That's the value-added option."

Co-authors on the recently published paper, "Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO-Cu2O semiconductor nanorod arrays," are Ghazaleh Ghadimkhani, Norma Tacconi, Wilaiwan Chanmanee and Csaba Janaky, all of the UT Arlington College of Science's Department of Chemistry and Biochemistry and CREST. Janaky also has a permanent appointment at the University of Szeged in Hungary.

Rajeshwar said he hopes that others will build on the research involving copper oxide nanotubes, CO2 and sunlight.

"Addressing tomorrow's energy needs and finding ways to stem the harmful effect of greenhouse gases are areas where UT Arlington scientists can connect their work to real-world problems," said Carolyn Cason, vice president for research at the University. "We hope solutions in the lab are only the beginning."

In addition to the journal, the new work also was featured in a recent edition of Chemical and Engineering News. That piece noted that the experiments generated methanol with 95 percent electrochemical efficiency and avoided the excess energy input, also known as overpotential, of other methods.

Tacconi, a recently retired research associate professor at UT Arlington, said the two types of copper oxide were selected because both are photo active and they have complementary solar light absorption. "And what could be better in Texas than to use the sunlight for methanol generation from carbon dioxide?"

Other than fuel, methanol is used in a wide variety of chemical processes, including the manufacturing of plastics, adhesives and solvents as well as wastewater treatment. In the United States, there are 18 methanol production plants with a cumulative annual capacity of more than 2.6 billion gallons, according to the paper.

The carbon dioxide-to-fuel research is part of the innovation going on at The University of Texas at Arlington, a comprehensive research institution of more than 33,800 students and more than 2,200 faculty members in the heart of North Texas.

####

For more information, please click here

Contacts:
Traci Peterson

Office:817-272-9208
Cell:817-521-5494

Copyright © University of Texas at Arlington

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Discoveries

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Announcements

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Energy

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

Solar/Photovoltaic

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Solliance realizes first up-scaled Perovskite based PV modules with 10% efficiency: Holst Centre, imec and ECN pave the road to upscaling Perovskite PV modules May 10th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic