Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > First signals from brain nerve cells with ultrathin nanowires

Jens Schouenborg
 Credit Lund University
Jens Schouenborg

Credit Lund University

Abstract:
Electrodes operated into the brain are today used in research and to treat diseases such as Parkinson's. However, their use has been limited by their size. At Lund University in Sweden, researchers have, for the first time, succeeded in implanting an ultrathin nanowire-based electrode and capturing signals from the nerve cells in the brain of a laboratory animal.

First signals from brain nerve cells with ultrathin nanowires

Lund, Sweden | Posted on February 20th, 2013

The researchers work at Lund University's Neuronano Research Centre in an interdisciplinary collaboration between experts in subjects including neurophysiology, biomaterials, electrical measurements and nanotechnology. Their electrode is composed of a group of nanowires, each of which measures only 200 nanometres (billionths of a metre) in diameter.

Such thin electrodes have previously only been used in experiments with cell cultures.

"Carrying out experiments on a living animal is much more difficult. We are pleased that we have succeeded in developing a functioning nano-electrode, getting it into place and capturing signals from nerve cells", says Professor Jens Schouenborg, who is head of the Neuronano Research Centre.

He sees this as a real breakthrough, but also as only a step on the way. The research group has already worked for several years to develop electrodes that are thin and flexible enough not to disturb the brain tissue, and with material that does not irritate the cells nearby. They now have the first evidence that it is possible to obtain useful nerve signals from nanometre-sized electrodes.

The research will now take a number of directions. The researchers want to try and reduce the size of the base to which the nanowires are attached, improve the connection between the electrode and the electronics that receive the signals from the nerve cells, and experiment with the surface structure of the electrodes to see what produces the best signals without damaging the brain cells.

"In the future, we hope to be able to make electrodes with nanostructured surfaces that are adapted to the various parts of the nerve cells - parts that are no bigger than a few billionths of a metre. Then we could tailor-make each electrode based on where it is going to be placed and what signals it is to capture or emit", says Jens Schouenborg.

When an electrode is inserted into the brain of a patient or a laboratory animal, it is generally anchored to the skull. This means that it doesn't move smoothly with the brain, which floats inside the skull, but rather rubs against the surrounding tissue, which in the long term causes the signals to deteriorate. The Lund group's electrodes will instead be anchored by their surface structure.

"With the right pattern on the surface, they will stay in place yet still move with the body - and the brain - thereby opening up for long-term monitoring of neurones", explains Jens Schouenborg.

He praises the collaboration between medics, physicists and others at the Neuronano Research Centre, and mentions physicist Dmitry B. Suyatin in particular. He is the principal author of the article which the researchers have now published in the international journal PLOS ONE.

The overall goal of the Neuronano Research Centre is to develop electrodes that can be inserted into the brain to study learning, pain and other mechanisms, and, in the long term, to treat conditions such as chronic pain, depression and Parkinson's disease.

About nanowires

The nanowires used in the Lund group's work are made of gallium phosphide, manufactured using a technique known as epitaxy, in which the material is built up one atomic layer at a time. A thin film of gold, a thin layer of hafnium oxide and a polymer layer have also been added to different parts of the electrode.

About nanometres

a nanometre is one billionth of a metre. A strand of hair is around 50 000 nanometres thick, while the diameter of a neurone cell body is usually between 10 000 and 40 000 nanometres.

####

For more information, please click here

Contacts:
Jens Schouenborg

+46 46 222 77 52
mob. +46 702 924572

Copyright © Lund University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article in PLOS ONE can be found here:

Related News Press

News and information

Dolomite to launch Meros TCU-100 temperature controller at Lab-on-a-Chip & Microarray World Congress September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Nanomedicine

Treatment of Cell Infection by Nanotechnology September 15th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Iranian Scientists Discover Nanotechnology Method to Remove Limitations in Tumor Surgery September 11th, 2014

Iranian Nanotechnology Scientists Produce Polymeric Scaffolds for Tissue Engineering September 11th, 2014

Discoveries

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Announcements

Dolomite to launch Meros TCU-100 temperature controller at Lab-on-a-Chip & Microarray World Congress September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE