Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Engineering “ghost” objects – a breakthrough in scattering illusion

(a) The original metallic object. (b) The metallic object covered by the designed ghost device, metamorphosing scattering feature of the original object. (c) A shrunk metallic object at the original centre with two wing dielectric objects, whose signature is identical to (b). [Image credits: National University of Singapore]
(a) The original metallic object. (b) The metallic object covered by the designed ghost device, metamorphosing scattering feature of the original object. (c) A shrunk metallic object at the original centre with two wing dielectric objects, whose signature is identical to (b).

[Image credits: National University of Singapore]

Abstract:
A team at the NUS Department of Electrical & Computer Engineering led by Dr Qiu Cheng-Wei has come out with an optical device to "engineer" ghosts. When someone claims he has seen a ghost, the phenomenon may be caused by an optical illusion happening through a wild stroke of nature. But the actual engineering of such a phenomenon is the holy grail of researchers in the field of optical illusions, electromagnetic, and radar detection -- not only because of the thrill and excitement of being able to create a "ghost" but because of the implications it will have in science and applications.

Engineering “ghost” objects – a breakthrough in scattering illusion

Singapore | Posted on February 19th, 2013

Their research has opened up a completely new avenue for cognitive deception through light-matter behaviour control. This would have wide applications in defence and security. Their findings will also pave the way for the design of new optical and microwave devices such as those for detection and communication. The team will further develop this technique to make larger microwave devices to achieve radar "ghosts" and aircraft camouflage suitable for defence purpose.

Dr Qiu's paper, co-authored with and Dr Han Tiancheng (NUS Dept of Electrical & Computer Engineering), Prof Tie Jun Cui, Dr Wei Xiang Jiang (State Key Laboratory of Millimeter Waves, Department of Radio Engineering, Nanjing), and Prof Shuang Zhang (School of Physics and Astronomy, University of Birmingham, UK), entitled "Creation of Ghost Illusions Using Metamaterials in Wave Dynamics" will be published in Advanced Functional Materials in March 2013.

Their paper reported for the first time, the realisation of creating "ghosts" through optic scattering and metamaterials which are artificial materials designed with properties (which do not exist naturally) built-in. Their device is capable of creating more than one virtual "ghost" image from the actual object. The geometric shape, position and equivalent material properties of these "ghost" images can be pre-designed and controlled -- and are also able to appear in distributed places away from the location of the real object.

Doing a David Copperfield

The scientific community has always been enthralled in the creation of an illusion which can potentially transform an actual perception into a pre-controlled perception. So far, scientists experimenting with metamaterials in "ghosting" do not have much success in changing the perception of the real object, and define where the "ghost" should appear. They can only create one "ghost", in the same location (as where the real object is).

But Dr Qiu's device can create multiple "ghosts". It can also make the real object or person "disappear". The researchers can also determine how the "ghosts" look, taking on a different shape or size from the actual object.

Added Dr Qiu, "As our work solves several major issues associated with "ghost" illusion, we believe it will pave way for future applications of advanced optical illusion, camouflage, and cloaking -- in an interestingly new sense. Our work has enormous potential to enhance our ability to mould, harness, and perceive wave at will. I believe it can stimulate new thoughts of realising something extraordinary that is counter-intuitive."

####

About National University of Singapore
A leading global university centred in Asia, the National University of Singapore (NUS) is Singapore’s flagship university which offers a global approach to education and research, with a focus on Asian perspectives and expertise.

NUS has 16 faculties and schools across three campuses. Its transformative education includes a broad-based curriculum underscored by multi-disciplinary courses and cross-faculty enrichment. Over 37,000 students from 100 countries enrich the community with their diverse social and cultural perspectives.

NUS has three Research Centres of Excellence (RCE) and 23 university-level research institutes and centres. It is also a partner in Singapore’s 5th RCE. NUS shares a close affiliation with 16 national-level research institutes and centres. Research activities are strategic and robust, and NUS is well-known for its research strengths in engineering, life sciences and biomedicine, social sciences and natural sciences. It also strives to create a supportive and innovative environment to promote creative enterprise within its community.

For more information, please click here

Contacts:
Karen Loh
Office of Corporate Relations
National University of Singapore
+65 6601 1485

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Influential Interfaces Lead to Advances in Organic Spintronics July 1st, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Discoveries

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Announcements

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Military

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

Photonics/Optics/Lasers

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

The quantum spin Hall effect is a fundamental property of light June 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project