Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Engineering “ghost” objects – a breakthrough in scattering illusion

(a) The original metallic object. (b) The metallic object covered by the designed ghost device, metamorphosing scattering feature of the original object. (c) A shrunk metallic object at the original centre with two wing dielectric objects, whose signature is identical to (b). [Image credits: National University of Singapore]
(a) The original metallic object. (b) The metallic object covered by the designed ghost device, metamorphosing scattering feature of the original object. (c) A shrunk metallic object at the original centre with two wing dielectric objects, whose signature is identical to (b).

[Image credits: National University of Singapore]

Abstract:
A team at the NUS Department of Electrical & Computer Engineering led by Dr Qiu Cheng-Wei has come out with an optical device to "engineer" ghosts. When someone claims he has seen a ghost, the phenomenon may be caused by an optical illusion happening through a wild stroke of nature. But the actual engineering of such a phenomenon is the holy grail of researchers in the field of optical illusions, electromagnetic, and radar detection -- not only because of the thrill and excitement of being able to create a "ghost" but because of the implications it will have in science and applications.

Engineering “ghost” objects – a breakthrough in scattering illusion

Singapore | Posted on February 19th, 2013

Their research has opened up a completely new avenue for cognitive deception through light-matter behaviour control. This would have wide applications in defence and security. Their findings will also pave the way for the design of new optical and microwave devices such as those for detection and communication. The team will further develop this technique to make larger microwave devices to achieve radar "ghosts" and aircraft camouflage suitable for defence purpose.

Dr Qiu's paper, co-authored with and Dr Han Tiancheng (NUS Dept of Electrical & Computer Engineering), Prof Tie Jun Cui, Dr Wei Xiang Jiang (State Key Laboratory of Millimeter Waves, Department of Radio Engineering, Nanjing), and Prof Shuang Zhang (School of Physics and Astronomy, University of Birmingham, UK), entitled "Creation of Ghost Illusions Using Metamaterials in Wave Dynamics" will be published in Advanced Functional Materials in March 2013.

Their paper reported for the first time, the realisation of creating "ghosts" through optic scattering and metamaterials which are artificial materials designed with properties (which do not exist naturally) built-in. Their device is capable of creating more than one virtual "ghost" image from the actual object. The geometric shape, position and equivalent material properties of these "ghost" images can be pre-designed and controlled -- and are also able to appear in distributed places away from the location of the real object.

Doing a David Copperfield

The scientific community has always been enthralled in the creation of an illusion which can potentially transform an actual perception into a pre-controlled perception. So far, scientists experimenting with metamaterials in "ghosting" do not have much success in changing the perception of the real object, and define where the "ghost" should appear. They can only create one "ghost", in the same location (as where the real object is).

But Dr Qiu's device can create multiple "ghosts". It can also make the real object or person "disappear". The researchers can also determine how the "ghosts" look, taking on a different shape or size from the actual object.

Added Dr Qiu, "As our work solves several major issues associated with "ghost" illusion, we believe it will pave way for future applications of advanced optical illusion, camouflage, and cloaking -- in an interestingly new sense. Our work has enormous potential to enhance our ability to mould, harness, and perceive wave at will. I believe it can stimulate new thoughts of realising something extraordinary that is counter-intuitive."

####

About National University of Singapore
A leading global university centred in Asia, the National University of Singapore (NUS) is Singapore’s flagship university which offers a global approach to education and research, with a focus on Asian perspectives and expertise.

NUS has 16 faculties and schools across three campuses. Its transformative education includes a broad-based curriculum underscored by multi-disciplinary courses and cross-faculty enrichment. Over 37,000 students from 100 countries enrich the community with their diverse social and cultural perspectives.

NUS has three Research Centres of Excellence (RCE) and 23 university-level research institutes and centres. It is also a partner in Singapore’s 5th RCE. NUS shares a close affiliation with 16 national-level research institutes and centres. Research activities are strategic and robust, and NUS is well-known for its research strengths in engineering, life sciences and biomedicine, social sciences and natural sciences. It also strives to create a supportive and innovative environment to promote creative enterprise within its community.

For more information, please click here

Contacts:
Karen Loh
Office of Corporate Relations
National University of Singapore
+65 6601 1485

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

$18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications October 1st, 2014

Arrowhead Expands Management Team with Appointment of Susan Boynton as Vice President Global Regulatory Affairs October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Govt.-Legislation/Regulation/Funding/Policy

$18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications October 1st, 2014

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

NREL Announces New Center Directors to lead R&D, Analysis Efforts September 30th, 2014

Discoveries

Breakthrough in ALD-graphene by Picosun technology October 1st, 2014

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

Nanoparticles Accumulate Quickly in Wetland Sediment: Aquatic food chains might be harmed by molecules "piggybacking" on carbon nanoparticles October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Announcements

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Military

$18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications October 1st, 2014

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Nanotechnology leads to better, cheaper LEDs for phones and lighting September 24th, 2014

Photonics/Optics/Lasers

$18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Speed at its limits September 30th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE