Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Imec demonstrates low power beamforming transceiver chipset for 60GHz multi-Gbit wireless communication: New advancement enables the development of low-power, low-cost, high-data rate solutions for true mobile devices

Imec’s low-power multi-Gbit 60GHz wireless module integrating a 40nm low-power chip with a 4-antenna array
Imec’s low-power multi-Gbit 60GHz wireless module integrating a 40nm low-power chip with a 4-antenna array

Abstract:
Imec, in collaboration with Panasonic Corporation (Japan), has presented at the IEEE International Solid-State Circuits Conference (ISSCC2013) a 60GHz radio transceiver chipset with low power consumption, that delivers high data rates over short distances. Imec drastically boosted the link budget of the system by introducing beamforming into the radio architecture. This multi-Gbit 60GHz chipset paves the way toward small size, low-power, low-cost, high-data rate solutions for battery-operated consumer devices, such as smart phones and tablets.

Imec demonstrates low power beamforming transceiver chipset for 60GHz multi-Gbit wireless communication: New advancement enables the development of low-power, low-cost, high-data rate solutions for true mobile devices

San Francisco, CA | Posted on February 19th, 2013

"Exchange of gigabytes of data between mobile devices requires a viable 60GHz technology that balances cost, size and power consumption," said Liesbet Van der Perre, program director of green radios at imec, "Imec's prototype transceiver chipset enables multi-gigabit wireless connectivity for ‘true mobile' devices thanks to its very low power consumption. More demanding applications such as high-definition video streaming and gaming with low latency, proximity computing and wireless docking can also be built on our technology."

The prototype chipset consists of a receiver and a transmitter chip, and these are based on a direct conversion architecture combined with an on-chip phased-array architecture. This makes it suited for implementation in 40nm low-power digital CMOS technology targeting low-cost, mass market production. The receiver and transmitter chips are implemented for 4 antenna paths, but they are easily extendible to more antenna paths thanks to the beamforming at analog baseband, rather than at RF. The chip size is kept low through the use of lumped components even at 60GHz, and very compact mm-wave CMOS layout techniques. The transmitter chip consumes 584mW and the receiver chip 400mW at 1.1V power supply. The chipset is integrated with a 4 antenna array in a compact module and demonstrated in a wireless link. With QPSK modulation, a data rate of 2.31Gbps is obtained, and with QAM16 modulation, a data rate of 4.62Gbps is achieved. No bit errors were found when transmitting packets of 32,768 symbols over a distance of 3.6m with QPSK modulation and 0.7m with QAM16 modulation. Thanks to the beamforming a 3dB scan angle range around 120º is achieved with 11dBi antenna gain.

The imec receiver and transmitter chips are designed for the IEEE802.11ad standard. The receiver and transmitter chipset has been tested with a IEEE 802.11ad PHY/MAC baseband chip developed by Panasonic, demonstrating the complete system for IEEE 802.11 applications. The beamforming functionality is also verified in these system tests.

We invite other companies to join imec's 60GHz R&D program as research partner or they can have access to the technology for further development through licensing programs.

####

About IMEC
Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China, India and Japan. Its staff of close to 2,000 people includes more than 600 industrial residents and guest researchers. In 2011, imec's revenue (P&L) was about 300 million euro. Further information on imec can be found at www.imec.be.
Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.) and imec India (Imec India Private Limited).

About Panasonic

Panasonic Corporation is a worldwide leader in the development and manufacture of electronic products in three business fields, consumer, components & devices, and solutions. Based in Osaka, Japan, the company recorded consolidated net sales of 7.85 trillion yen for the year ended March 31, 2012. Panasonic’s stock is listed on the Tokyo, Osaka, Nagoya and New York (NYSE:PC) Stock Exchanges. The company has the vision of becoming the No. 1 Green Innovation Company in the Electronics Industry by the 100th year of its founding in 2018. For more information on Panasonic, its brand and commitment to sustainability, visit the company's website at panasonic.net

For more information, please click here

Contacts:
Hanne Degans
External Communications Officer
T: +32 16 28 17 69
Mobile: +32 486 065 175



Olga Walsh
Business Technology
[ f o r m u l a ]
Formula PR, Inc.
1215 Cushman Avenue
San Diego, CA 92110
Office 619-234-0345

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Hardware

Leti Announces Backside Shield that Protects Microchips from Physical Attacks March 8th, 2017

A SOI wafer is a suitable substrate for gallium nitride crystals: Improved characteristics in power electronics and radio applications can be achieved by using a SOI wafer for gallium nitride growth March 4th, 2017

New research could trigger revolution in computer electronics manufacturing March 3rd, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Chip Technology

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Announcements

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Events/Classes

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Oxford Instruments Asylum Research and Microscopy and Analysis Present the Webinar: “Video-Rate Atomic Force Microscopy Enables New Research Opportunities” May 9th, 2017

Alliances/Trade associations/Partnerships/Distributorships

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

BASF and Landa partner to create revolutionary pigments for automotive coatings: The alliance combines BASF innovations with Landa nano-pigment technology April 5th, 2017

Leti Announces EU/South Korean Project for World’s First 5G-system Prototype: Coinciding with the 2018 Winter Games in PyeongChang, Korea, Prototype Will Be First Time State-of-the-art Terrestrial Wireless Communication Is Seamlessly Combined with Disruptive Satellite Communicati April 4th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Research partnerships

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project