Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers Create Semiconductor ‘Nano-Shish-Kebabs’ With Potential for 3-D Technologies

The "shish-kebab" consists of two-dimensional nanosheets strung along a nanowire.
The "shish-kebab" consists of two-dimensional nanosheets strung along a nanowire.

Abstract:
"Epitaxial Nanosheet-Nanowire Heterostructures"

Authors: Chun Li, Yifei Yu and Linyou Cao, North Carolina State University; Miaofang Chi, Oak Ridge National Laboratory

Published: online Feb. 18 in Nano Letters

Abstract: We demonstrate synthesis of a new type of heterostructures that comprise two-dimensional (2D) nanosheets (NSs) epitaxially grown at one-dimensional (1D) nanowires (NWs). The synthesis involves using materials with a graphite-like layered structure in which covalently bonded layers are held by weak van der Waals forces. GeS was used as a prototype material in this work. The synthesis also involves a seeded-growth process, where GeS NWs are grown first as seeds followed by a seeded growth of NSs at the pre-grown NWs. We observe that exposing the pre-grown NWs to air prior to the seeded growth is critical for the formation of NSs to yield NS?NW heterostructures. Our experimental results suggest that this might be due to a mild oxidation caused by the air exposure at the NW surface, which could subsequently facilitate the nucleation of NSs at the NWs. It also suggests that the surface oxidation needs to be controlled in a proper range in order to achieve optimized NS growths. We believe that this synthetic strategy may generally apply to the growth of NS?NW heterostructures of other layered chalcogenide materials. NS?NW heterostructures provide capabilities to monolithically integrate the functionality of 1D NWs and 2D NSs into a 3D space. It holds great potential in applications that request complex nanomaterials with multiple functionality, high surface area, and efficient charge transport, such as energy storage, chemical sensing, solar energy conversion, and 3D electric and photonic devices.

Researchers Create Semiconductor ‘Nano-Shish-Kebabs’ With Potential for 3-D Technologies

Raleigh, NC | Posted on February 19th, 2013

Researchers at North Carolina State University have developed a new type of nanoscale structure that resembles a "nano-shish-kebab," consisting of multiple two-dimensional nanosheets that appear to be impaled upon a one-dimensional nanowire. However, the nanowire and nanosheets are actually a single, three-dimensional structure consisting of a seamless series of germanium sulfide (GeS) crystals. The structure holds promise for use in the creation of new, three-dimensional (3-D) technologies.

The researchers believe this is the first engineered nanomaterial to combine one-dimensional and two-dimensional structures in which all of the components have a shared crystalline structure.

Combining the nanowire and nanosheets into a single "heterostructure" creates a material with both a large surface area and - because GeS is a semiconductor - the ability to transfer electric charges efficiently. The nanosheets provide a very large surface area, and the nanowire acts as a channel that can transmit charges between the nanosheets or from the nanosheets to another surface. This combination of features means it could be used to develop 3-D devices, such as next-generation sensors, photodetectors or solar cells. This 3-D structure could also be useful for developing new energy storage technologies, such as next-generation supercapacitors.

"We think this approach could also be used to create heterostructures like these using other materials whose molecules form similar crystalline layers, such as molybdenum sulfide (MoS2)," says Dr. Linyou Cao, an assistant professor of materials science and engineering at NC State and co-author of a paper on the research. "And, while germanium sulfide has excellent photonic properties, MoS2 holds more promise for electronic applications."

The process, Cao says, is also attractive because "it is inexpensive and could be scaled up for industrial processes."

To create the nano-shish-kebabs, the researchers begin by creating a GeS nanowire approximately 100 nanometers in width. The nanowire is then exposed to air, creating nucleation sites on the wire surface through weak oxidation. The nanowire is then exposed to GeS vapor, which forms into two-dimensional nanosheets at each of the nucleation sites.

"Our next step is to see if we can create these heterostructures in other materials, such as MoS2," Cao says. "We think we can, but we need to prove it."

The paper, "Epitaxial Nanosheet-Nanowire Heterostructures," was published online Feb. 18 in Nano Letters. The lead author is Dr. Chun Li, a former postdoctoral researcher at NC State. Co-authors are Yifei Yu, a Ph.D. student at NC State; Cao; and Dr. Miaofang Chi of Oak Ridge National Laboratory. The research was supported by the U.S. Army Research Office.

-shipman-

####

For more information, please click here

Contacts:
Matt Shipman

919-515-6386

Dr. Linyou Cao

919.515.5407

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “Epitaxial Nanosheet–Nanowire Heterostructures,” was published online Feb. 18 in Nano Letters:

Related News Press

News and information

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Chemistry

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Chemical hot spots: Scanning tunneling microscopy measurements identify active sites on catalyst surfaces September 7th, 2017

Laboratories

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Chip Technology

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES and Soitec Enter Into Long-term Supply Agreement on FD-SOI Wafers: Strategic milestone to help guarantee a secure, high-volume supply of FD-SOI technology September 20th, 2017

GLOBALFOUNDRIES Announces Availability of mmWave and RF/Analog on Leading FDX™ FD-SOI Technology Platform: Technology solution delivers ‘connected intelligence’ to next generation high-volume wireless and IoT applications with lower power and significantly reduced cost September 20th, 2017

Sensors

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Leti Develops Proof of Concept to Test Wireless Systems in Aircraft: Will Present Results of Joint Project at AeroTech Conference And Exhibition in Fort Worth, Texas, Sept. 26-28 September 20th, 2017

Research shows how DNA molecules cross nanopores: Study could inform biosensors, manufacturing, and more September 5th, 2017

Leti and Partners in PiezoMAT Project Develop New Fingerprint Technology for Highly Reliable Security and ID Applications: Ultra-high Resolution Pressure Sensing Uses Matrices of Vertical Piezoelectric Nanowire To Reconstruct the Smallest Features of Human Fingerprints September 5th, 2017

Nanoelectronics

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

Bit data goes anti-skyrmions September 1st, 2017

Ames Laboratory scientists move graphene closer to transistor applications August 30th, 2017

Discoveries

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Announcements

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Military

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Energy

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Insect eyes inspire new solar cell design from Stanford August 31st, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

A revolution in lithium-ion batteries is becoming more realistic September 5th, 2017

High-tech electronics made from autumn leaves: New process converts biomass waste into useful electronic devices August 30th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Photonics/Optics/Lasers

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

Research partnerships

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Solar/Photovoltaic

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project