Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Exploring supercapacitors to improve their structure

Simplified diagram of a supercapacitor and how it works from the macroscopic scale to the molecular level.©Cehmti-Michael Deschamps
Simplified diagram of a supercapacitor and how it works from the macroscopic scale to the molecular level.©Cehmti-Michael Deschamps

Abstract:
No matter how intimidating their name, supercapacitors are part of our daily lives. Take buses for example: supercapacitors are charged during braking and supply electricity to open the doors when the vehicle stops! Yet the molecular organization and functioning of these electricity storage devices had never previously been observed. For the first time, researchers from CNRS and the Université d'Orléans have explored the molecular rearrangements at play in commercially available supercapacitors while in operation. The technique devised by the scientists provides a new tool for optimizing and improving tomorrow's supercapacitors. The results are published on-line on Nature Materials's website on 17 February 2013.

Exploring supercapacitors to improve their structure

Paris, France | Posted on February 18th, 2013

Supercapacitors are electricity storage devices that are quite different to batteries. Unlike these, they are charged much faster (usually in seconds) and they do not suffer such rapid wear due to charging/discharging. On the other hand, at equivalent size and although they offer greater power, they cannot store as much electrical energy as batteries (carbon-based supercapacitors supply an energy density of around 5 Wh/kg compared to around 100 Wh/kg for lithium-ion batteries). Supercapacitors are used in the recovery of braking energy in numerous vehicles (cars, buses, trains, etc.) and to open the emergency exits of the Airbus A380.

A supercapacitor stores electricity through the interaction between nanoporous carbon electrodes and ions, which carry positive and negative charges, and move about in a liquid known as an electrolyte (see diagram below). When charging, the anions (negatively charged ions) are replaced by cations (positively charged ions) in the negative electrode and vice versa. The greater this exchange and the higher the available carbon surface area, the greater the capacity of the supercapacitor.

Using Nuclear Magnetic Resonance (NMR) spectroscopy, the researchers delved deeper into this phenomenon and were able, for the first time, to quantify the proportion in which charge exchanges take place in two supercapacitors using commercially available carbons. By comparing two nanoporous carbon materials, they were able to show that the supercapacitor containing the carbon with the most disordered structure had greater capacitance and improved high-voltage tolerance. This could be due to better electronic charge distribution upon contact with the electrolyte molecules.

These results stem from a collaboration between two Orleans-based teams: one from the CNRS CEMHTI (1), specialized in NMR and a member of the Réseau Français sur le Stockage Electrochimique de l'Energie (www.energie-rs2e.com), the other at the Centre de Recherche sur la Matière Divisée (CNRS/Université d'Orléans), which focuses on the study of new carbon materials for supercapacitors. This complementarity has made it possible to develop a technique that gives research laboratories and industry a genuine tool for optimizing supercapacitors' materials.

(1) CNRS Laboratoire "Conditions Extrêmes et Matériaux : Haute Température et Irradiation"

Full bibliographic information

Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR, M. Deschamps, E. Gilbert, P. Azais, E. Raymundo-Pinero, M.R. Ammar, P. Simon, D. Massiot, F. Béguin, Nature Materials. Published on-line on the 17 February (DOI: 10.1038/NMAT3567).

####

For more information, please click here

Contacts:
Julien Guillaume
+ 33 1 44 96 51 51


Researcher
Michaël Deschamps
T +33 (0)2 38 25 55 11


CNRS
research officer
Priscilla Dacher
T +33 (0)1 44 96 46 06 l

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Organometallics welcomes new editor-in-chief: Paul Chirik, Ph.D. July 22nd, 2014

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Iran to Hold 3rd Int'l Forum on Nanotechnology Economy July 22nd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Discoveries

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Announcements

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Labs characterize carbon for batteries: Rice, Lawrence Livermore scientists calculate materials’ potential for use as electrodes July 14th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014

Using Sand to Improve Battery Performance: Researchers develop low cost, environmentally friendly way to produce sand-based lithium ion batteries that outperform standard by three times July 8th, 2014

The first demonstration of a self-powered cardiac pacemaker June 23rd, 2014

Research partnerships

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Labs characterize carbon for batteries: Rice, Lawrence Livermore scientists calculate materials’ potential for use as electrodes July 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE