Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Exploring supercapacitors to improve their structure

Simplified diagram of a supercapacitor and how it works from the macroscopic scale to the molecular level.©Cehmti-Michael Deschamps
Simplified diagram of a supercapacitor and how it works from the macroscopic scale to the molecular level.©Cehmti-Michael Deschamps

Abstract:
No matter how intimidating their name, supercapacitors are part of our daily lives. Take buses for example: supercapacitors are charged during braking and supply electricity to open the doors when the vehicle stops! Yet the molecular organization and functioning of these electricity storage devices had never previously been observed. For the first time, researchers from CNRS and the Université d'Orléans have explored the molecular rearrangements at play in commercially available supercapacitors while in operation. The technique devised by the scientists provides a new tool for optimizing and improving tomorrow's supercapacitors. The results are published on-line on Nature Materials's website on 17 February 2013.

Exploring supercapacitors to improve their structure

Paris, France | Posted on February 18th, 2013

Supercapacitors are electricity storage devices that are quite different to batteries. Unlike these, they are charged much faster (usually in seconds) and they do not suffer such rapid wear due to charging/discharging. On the other hand, at equivalent size and although they offer greater power, they cannot store as much electrical energy as batteries (carbon-based supercapacitors supply an energy density of around 5 Wh/kg compared to around 100 Wh/kg for lithium-ion batteries). Supercapacitors are used in the recovery of braking energy in numerous vehicles (cars, buses, trains, etc.) and to open the emergency exits of the Airbus A380.

A supercapacitor stores electricity through the interaction between nanoporous carbon electrodes and ions, which carry positive and negative charges, and move about in a liquid known as an electrolyte (see diagram below). When charging, the anions (negatively charged ions) are replaced by cations (positively charged ions) in the negative electrode and vice versa. The greater this exchange and the higher the available carbon surface area, the greater the capacity of the supercapacitor.

Using Nuclear Magnetic Resonance (NMR) spectroscopy, the researchers delved deeper into this phenomenon and were able, for the first time, to quantify the proportion in which charge exchanges take place in two supercapacitors using commercially available carbons. By comparing two nanoporous carbon materials, they were able to show that the supercapacitor containing the carbon with the most disordered structure had greater capacitance and improved high-voltage tolerance. This could be due to better electronic charge distribution upon contact with the electrolyte molecules.

These results stem from a collaboration between two Orleans-based teams: one from the CNRS CEMHTI (1), specialized in NMR and a member of the Réseau Français sur le Stockage Electrochimique de l'Energie (www.energie-rs2e.com), the other at the Centre de Recherche sur la Matière Divisée (CNRS/Université d'Orléans), which focuses on the study of new carbon materials for supercapacitors. This complementarity has made it possible to develop a technique that gives research laboratories and industry a genuine tool for optimizing supercapacitors' materials.

(1) CNRS Laboratoire "Conditions Extrêmes et Matériaux : Haute Température et Irradiation"

Full bibliographic information

Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR, M. Deschamps, E. Gilbert, P. Azais, E. Raymundo-Pinero, M.R. Ammar, P. Simon, D. Massiot, F. Béguin, Nature Materials. Published on-line on the 17 February (DOI: 10.1038/NMAT3567).

####

For more information, please click here

Contacts:
Julien Guillaume
+ 33 1 44 96 51 51


Researcher
Michaël Deschamps
T +33 (0)2 38 25 55 11


CNRS
research officer
Priscilla Dacher
T +33 (0)1 44 96 46 06 l

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

A new technique to make drugs more soluble August 28th, 2015

Discoveries

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

A new technique to make drugs more soluble August 28th, 2015

Announcements

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

A new technique to make drugs more soluble August 28th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

'Diamonds from the sky' approach turns CO2 into valuable products August 19th, 2015

Drexel engineers 'sandwich' atomic layers to make new materials for energy storage August 15th, 2015

Flexible, biodegradable device can generate power from touch (video) August 12th, 2015

Research partnerships

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic