Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > University of Waterloo researchers propose breakthrough architecture for quantum computers

Abstract:
A team of researchers at the University of Waterloo's Institute for Quantum Computing has proposed a new computational model that may become the architecture for a scalable quantum computer.

University of Waterloo researchers propose breakthrough architecture for quantum computers

Waterloo, Canada | Posted on February 17th, 2013

In a paper to be published in the journal Science this week, the research team of IQC Associate Professor Andrew Childs, post-doctoral fellow David Gosset and PhD student Zak Webb proposes using multi-particle quantum walks for universal computation. In a multi-particle quantum walk, particles live on the vertices of a graph and can move between vertices joined by an edge. Furthermore, nearby particles can interact with each other.

Traditionally, a quantum algorithm is implemented on a register of qubits by actively manipulating the qubits according to a set of desired operations. In this new model, a desired quantum algorithm can be implemented by letting the qubits "quantum walk" on an appropriately chosen graph, without having to control the qubits. The process is analogous to a billiard-ball computer where classical logic gates are performed using collisions.

Many previous quantum-walk experiments have not been scalable. But this new model proposed by Childs and his team identifies the requirements to implement quantum walks so they have the potential for significant quantum speedup, paving the way for scalable future experiments. The model could be naturally realized in a variety of systems, including photons with interactions mediated by superconducting circuits.

Quantum walk-based computing is particularly promising because of its universality. "In principle we can cast any quantum algorithm into this model," says Childs. In future work, Childs and his team are interested in applying the model to develop new quantum algorithms and to study problems in quantum computational complexity.

####

About Institute for Quantum Computing
The Institute for Quantum Computing (IQC) is a multidisciplinary scientific research institute at the University of Waterloo. Our research focuses on harnessing the quantum laws of nature to discover and develop powerful new technologies that will transform information technology and drive the 21st century economy. IQC research bridges theory and experiments in quantum computing, quantum communication and other quantum devices through the collaboration of over 200 computer scientists, engineers, mathematicians, physical scientists and students. Established in 2002, IQC also offers graduate and post-graduate programs and educational outreach activities that inspire scientific discovery in the realm of quantum mechanics.

About the University of Waterloo

In just half a century, the University of Waterloo, located at the heart of Canada's technology hub, has become one of Canada's leading comprehensive universities with 35,000 full- and part-time students in undergraduate and graduate programs. Waterloo, as home to the world's largest post-secondary co-operative education program, embraces its connections to the world and encourages enterprising partnerships in learning, research and discovery. In the next decade, the university is committed to building a better future for Canada and the world by championing innovation and collaboration to create solutions relevant to the needs of today and tomorrow. For more information about Waterloo, visit www.uwaterloo.ca.

For more information, please click here

Contacts:
Media contact
Tobi Day-Hamilton
Associate Director
Communications and External Relations
Institute for Quantum Computing
University of Waterloo

519-497-1846
http://www.iqc.uwaterloo.ca/

Scientific contact

Andrew Childs
Institute for Quantum Computing
University of Waterloo

Copyright © Institute for Quantum Computing

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Get ready for NanoDays! March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Superconductivity

Strength in numbers: Researchers develop the first-ever quantum device that detects and corrects its own errors March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Chip Technology

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

Cambrios and Heraeus Jointly Create New, High-Conductivity Transparent Conductors: Two Companies' Combined Products Dramatically Extend Flexible Substrate Capabilities for Next-Generation Mass-Market Technology Products March 3rd, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Quantum Computing

Strength in numbers: Researchers develop the first-ever quantum device that detects and corrects its own errors March 4th, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Waterloo invention advances quantum computing research: New device, which will be used in labs around the world to develop quantum technologies, produces fragile entangled photons in a more efficient way February 16th, 2015

Discoveries

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Announcements

Get ready for NanoDays! March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Photonics/Optics/Lasers

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Breakthrough in OLED technology March 2nd, 2015

International research partnership tricks the light fantastic March 2nd, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE