Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > University of Waterloo researchers propose breakthrough architecture for quantum computers

Abstract:
A team of researchers at the University of Waterloo's Institute for Quantum Computing has proposed a new computational model that may become the architecture for a scalable quantum computer.

University of Waterloo researchers propose breakthrough architecture for quantum computers

Waterloo, Canada | Posted on February 17th, 2013

In a paper to be published in the journal Science this week, the research team of IQC Associate Professor Andrew Childs, post-doctoral fellow David Gosset and PhD student Zak Webb proposes using multi-particle quantum walks for universal computation. In a multi-particle quantum walk, particles live on the vertices of a graph and can move between vertices joined by an edge. Furthermore, nearby particles can interact with each other.

Traditionally, a quantum algorithm is implemented on a register of qubits by actively manipulating the qubits according to a set of desired operations. In this new model, a desired quantum algorithm can be implemented by letting the qubits "quantum walk" on an appropriately chosen graph, without having to control the qubits. The process is analogous to a billiard-ball computer where classical logic gates are performed using collisions.

Many previous quantum-walk experiments have not been scalable. But this new model proposed by Childs and his team identifies the requirements to implement quantum walks so they have the potential for significant quantum speedup, paving the way for scalable future experiments. The model could be naturally realized in a variety of systems, including photons with interactions mediated by superconducting circuits.

Quantum walk-based computing is particularly promising because of its universality. "In principle we can cast any quantum algorithm into this model," says Childs. In future work, Childs and his team are interested in applying the model to develop new quantum algorithms and to study problems in quantum computational complexity.

####

About Institute for Quantum Computing
The Institute for Quantum Computing (IQC) is a multidisciplinary scientific research institute at the University of Waterloo. Our research focuses on harnessing the quantum laws of nature to discover and develop powerful new technologies that will transform information technology and drive the 21st century economy. IQC research bridges theory and experiments in quantum computing, quantum communication and other quantum devices through the collaboration of over 200 computer scientists, engineers, mathematicians, physical scientists and students. Established in 2002, IQC also offers graduate and post-graduate programs and educational outreach activities that inspire scientific discovery in the realm of quantum mechanics.

About the University of Waterloo

In just half a century, the University of Waterloo, located at the heart of Canada's technology hub, has become one of Canada's leading comprehensive universities with 35,000 full- and part-time students in undergraduate and graduate programs. Waterloo, as home to the world's largest post-secondary co-operative education program, embraces its connections to the world and encourages enterprising partnerships in learning, research and discovery. In the next decade, the university is committed to building a better future for Canada and the world by championing innovation and collaboration to create solutions relevant to the needs of today and tomorrow. For more information about Waterloo, visit www.uwaterloo.ca.

For more information, please click here

Contacts:
Media contact
Tobi Day-Hamilton
Associate Director
Communications and External Relations
Institute for Quantum Computing
University of Waterloo

519-497-1846
http://www.iqc.uwaterloo.ca/

Scientific contact

Andrew Childs
Institute for Quantum Computing
University of Waterloo

Copyright © Institute for Quantum Computing

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Superconductivity

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Helium 'balloons' offer new path to control complex materials June 27th, 2015

Fabricating inexpensive, high-temp SQUIDs for future electronic devices June 22nd, 2015

Chip Technology

Nanometrics Announces Upcoming Investor Events July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Quantum Computing

Quantum networks: Back and forth are not equal distances! July 28th, 2015

The quantum middle man July 2nd, 2015

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

Discoveries

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Announcements

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Photonics/Optics/Lasers

Photonex 2015 - The 3rd biennial Optical Metrology meeting is announced with an exciting number of speakers from across Europe July 28th, 2015

Nanophase to present paper on slurry pH impact at Optics + Photonics conference July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project