Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers invent “acoustic-assisted” magnetic information storage

Abstract:
Electrical engineers at Oregon State University have discovered a way to use high- frequency sound waves to enhance the magnetic storage of data, offering a new approach to improve the data storage capabilities of a multitude of electronic devices around the world.

Researchers invent “acoustic-assisted” magnetic information storage

Corvallis, OR | Posted on February 15th, 2013

The technology, called acoustic-assisted magnetic recording, has been presented at a professional conference, and a patent application was filed this week.

Magnetic storage of data is one of the most inexpensive and widespread technologies known, found in everything from computer hard drives to the magnetic strip on a credit card. It's permanent, dependable and cheap. However, long-term reliability of stored data becomes an increasing concern as the need grows to pack more and more information in storage devices, experts say.

"We're near the peak of what we can do with the technology we now use for magnetic storage," said Pallavi Dhagat, an associate professor in the OSU School of Electrical Engineering and Computer Science. "There's always a need for approaches that could store even more information in a smaller space, cost less and use less power."

That can be possible, scientists say, if the magnetic materials are temporarily heated, even for an instant, so they can become momentarily less stiff and more data can be stored at a particular spot. This has proven difficult to do, because the heating tends to spread beyond where it is wanted and the technology involves complex integration of optics, electronics and magnetics.

With the new approach, ultrasound is directed at a highly specific location while data is being stored, creating elasticity that literally allows a tiny portion of the material to bend or stretch. It immediately resumes its shape when the ultrasound waves stop. The data can be stored reliably without the concerns around heating.

It should also be possible to create a solid state memory device with no moving parts to implement this technology, researchers said. Unlike conventional hard-disk drive storage, solid state memory would offer durability.

These advances were recently reported at the 12th Joint MMM/Intermag Conference in Chicago.

"This technology should allow us to marry the benefits of solid state electronics with magnetic recording, and create non-volatile memory systems that store more data in less space, using less power," said Albrecht Jander, also an associate professor of electrical engineering and collaborator on the research.

This approach might work with materials already being used in magnetic recordings, or variations on them, the investigators said. Continued research will explore performance, materials and cost issues.

Advances in data storage are part of what has enabled the enormous advance in high technology systems in recent decades.

A disk drive at the dawn of this era in the 1950s had five megabyte capacity, cost today's equivalent of $160,000, weighed about a ton, had to be moved with a forklift and was so big it had to be shipped on a large cargo aircraft. Experts at the time said they could have built something with more storage capacity, but they could not envision why anyone would want it, or buy it.

A system today that stores 500 gigabytes, or 100,000 times as much information, is found routinely in laptop computers that cost a few hundred dollars.

####

About Oregon State University
The OSU College of Engineering is among the nation’s largest and most productive engineering programs. In the past six years, the College has more than doubled its research expenditures to $27.5 million by emphasizing highly collaborative research that solves global problems, spins out new companies, and produces opportunity for students through hands-on learning.

For more information, please click here

Contacts:
Pallavi Dhagat

541-737-9927

Copyright © Oregon State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Memory Technology

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Scientists determine precise 3-D location, identity of all 23,000 atoms in a nanoparticle: Berkeley Lab researchers help to map iron-platinum particle in unprecedented detail February 6th, 2017

Discoveries

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project