Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Engineers show feasibility of superfast materials: 'Organic topological insulators' for quantum computing

University of Utah engineers demonstrated it is feasible to build the first organic materials that conduct electricity on their molecular edges, but act as an insulator inside. Called organic topological insulators, these materials are made from a thin molecular sheet (left) that resembles chicken wire and conducts electricity on its right edge (blue line) -- with the electrons carrying more information in the form of "up" spin. These new materials could be used to shuttle information at the speed of light in quantum computers due to the unique physical behavior a special class of electrons called Dirac fermions, depicted (right) in a plot of their energy and momentum.

Credit: Zhengfei Wang and Feng Liu, University of Utah
University of Utah engineers demonstrated it is feasible to build the first organic materials that conduct electricity on their molecular edges, but act as an insulator inside. Called organic topological insulators, these materials are made from a thin molecular sheet (left) that resembles chicken wire and conducts electricity on its right edge (blue line) -- with the electrons carrying more information in the form of "up" spin. These new materials could be used to shuttle information at the speed of light in quantum computers due to the unique physical behavior a special class of electrons called Dirac fermions, depicted (right) in a plot of their energy and momentum.

Credit: Zhengfei Wang and Feng Liu, University of Utah

Abstract:
University of Utah engineers demonstrated it is feasible to build the first organic materials that conduct electricity on their edges, but act as an insulator inside. These materials, called organic topological insulators, could shuttle information at the speed of light in quantum computers and other high-speed electronic devices.

Engineers show feasibility of superfast materials: 'Organic topological insulators' for quantum computing

Salt Lake City, UT | Posted on February 14th, 2013

The study published this week in the journal Nature Communications will help pioneer a new field of research in materials science, in the same way organic materials lowered the cost and eased production of light-emitting diodes and solar cells, says senior author Feng Liu, professor and chair of materials science and engineering.

"This is the first demonstration of the existence of topological insulators based on organic materials," says Liu. "Our findings will broaden the scope and impact of these materials in various applications from spintronics to quantum computing."

While other researchers still must synthesize the new organic topological insulators, Liu says his team's previous work "shows we can engineer an interface between two different thin films to create topological insulators," in which electrons known as Dirac fermions move along the interface between two films, Liu adds.

Liu and his co-workers at the University of Utah's College of Engineering performed theoretical calculations to predict the existence of an organic topological insulator using molecules with carbon-carbon bonds and carbon-metal bonds, called an organometallic compound. For this new study, the team investigated how Dirac fermions move along the edges of this compound, which looks like a sheet of chicken wire.

To generate a topological insulator, scientists have to design materials that can transmit fermions. In a topological insulator, fermions behave like a massless or weightless packet of light, conducting electricity as they move very fast along a material's surface or edges. When these fermions venture inside the material, however, this "weightless" conductivity screeches to a halt.

What's more, Dirac fermions have a property called spin, or angular momentum around the particle's axis that behaves like a magnetic pole. This property gives scientists another way to place information into a particle because the spin can be switched "up" or "down." Such a mechanism could be useful for spin-based electronic devices, called spintronics, which can store information both in the charge and the spin of electrons.

"We have demonstrated a system with a special type of electron - a Dirac fermion - in which the spin motion can be manipulated to transmit information," Liu says. "This is advantageous over traditional electronics because it's faster and you don't have to worry about heat dissipation."

Earlier this year, Liu and his team discovered a "reversible" topological insulator in a system of bismuth-based compounds in which the behavior of ordinary or Dirac fermions could be controlled at the interface between two thin films. Bismuth is a metal best known as an ingredient of Pepto-Bismol. These theoretical predictions were confirmed experimentally by co-authors from Shanghai Jiaotong University in China.

Although inorganic topological insulators based on different materials have been studied for the last decade, organic or molecular topological insulators have not.

Liu conducted the study with Zhengfei Wang and Zheng Liu, both postdoctoral fellows in materials science and engineering at the University of Utah. The study was funded primarily by the U.S. Department of Energy, with additional support from the Army Research Laboratory and from the National Science Foundation through the University of Utah's Materials Research Science and Engineering Center.

####

For more information, please click here

Contacts:
Aditi Risbud

801-587-9038

University of Utah College of Engineering
72 S. Central Campus Dr., Room 1650 WEB
Salt Lake City, UT 84112
801-581-6911
fax: 801-581-8692
www.coe.utah.edu

Copyright © University of Utah

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New non-invasive method can detect Alzheimer's disease early: MRI probe technology shows brain toxins in living animals for first time December 22nd, 2014

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Quantum physics just got less complicated December 22nd, 2014

Enzyme Biosensor Used for Rapid Measurement of Drug December 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Mysteries of ‘Molecular Machines’ Revealed: Phenix software uses X-ray diffraction spots to produce 3-D image December 22nd, 2014

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Spintronics

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Chip Technology

Instant-start computers possible with new breakthrough December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Quantum Computing

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

Graphene layer reads optical information from nanodiamonds electronically: Possible read head for quantum computers December 1st, 2014

Discoveries

Mysteries of ‘Molecular Machines’ Revealed: Phenix software uses X-ray diffraction spots to produce 3-D image December 22nd, 2014

New non-invasive method can detect Alzheimer's disease early: MRI probe technology shows brain toxins in living animals for first time December 22nd, 2014

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Enzyme Biosensor Used for Rapid Measurement of Drug December 22nd, 2014

Announcements

New non-invasive method can detect Alzheimer's disease early: MRI probe technology shows brain toxins in living animals for first time December 22nd, 2014

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Quantum physics just got less complicated December 22nd, 2014

Enzyme Biosensor Used for Rapid Measurement of Drug December 22nd, 2014

Military

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE