Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Newly Published UMD “Time Reversal” Research May Open Doors to Future Tech

Abstract:
Imagine a cell phone charger that recharges your phone remotely without even knowing where it is; a device that targets and destroys tumors, wherever they are in the body; or a security field that can disable electronics, even a listening device hiding in a prosthetic toe, without knowing where it is.

Newly Published UMD “Time Reversal” Research May Open Doors to Future Tech

College Park, MD | Posted on February 13th, 2013

While these applications remain only dreams, researchers at the University of Maryland have come up with a sci-fi seeming technology that one day could make them real. Using a "time-reversal" technique, the team has discovered how to transmit power, sound or images to a "nonlinear object" without knowing the object's exact location or affecting objects around it. The UMD team has just published a paper about their work in Physical Review Letters: prl.aps.org/abstract/PRL/v110/i6/e063902

"That's the magic of time reversal," says Steven Anlage, a university physics professor involved in the project. "When you reverse the waveform's direction in space and time, it follows the same path it took coming out and finds its way exactly back to the source."

Play It Backwards

The time-reversal process is less like living the last five minutes over and more like playing a record backwards, explains Matthew Frazier, a postdoctoral research fellow in the university's physics department. When a signal travels through the air, its waveforms scatter before an antenna picks it up. Recording the received signal and transmitting it backwards reverses the scatter and sends it back as a focused beam in space and time.

"If you go toward a secure building, they won't let you take cell phones," Frazier says, so instead of checking everyone, they could detect the cell phone and send a lot of energy to it to jam it." What differentiates this research from other time-reversal projects, such as underwater communication, is that it focuses on nonlinear objects such as a cellphone, diode or even a rusty piece of metal --when a waveform bounces off them, the frequency changes.

Most components electrical engineers work with are linear—capacitors, wire, antennas—because they do not change the frequency. With nonlinear objects, however, when the altered, nonlinear frequency is recorded, time-reversed and retransmitted, it creates a private communication channel because other objects cannot "understand" the signal.

"Time reversal has been around for 10 to 20 years but it requires some pretty sophisticated technology to make it work," Anlage says. "Technology is now catching up to where we are able to use it in some new and interesting ways."

Not only could this nonlinear characteristic secure a wireless communication line, it could prevent transmitted energy from affecting any object but its target. For example, Frazier says, if scientists find a way to tag tumors with chemicals or nanoparticles that react to microwaves in a nonlinear way, doctors could use the technology to direct destructive heat to the errant cells—much like ultrasound is used to break down kidney stones. But unlike an ultrasound, that is directed to a specific location, doctors would not need to know where the tumors were and the heat treatment would not affect surrounding cells.

Bouncing Off the Walls

To study the phenomenon, the researchers sent a microwave pulse into an enclosed area where waveforms scattered and bounced around inside, as well as off a nonlinear and a linear port. A transceiver then recorded and time-reversed the frequencies the nonlinear port had altered and broadcast them back into the space. The nonlinear port picked up the time-reversed signal but the linear port did not.

"Everything we have done has been in very controlled conditions in labs," Frazier says. "It will take more research to figure out how to develop treatments," Frazier says. "I'm sure there are other uses we haven't thought of."

The team has submitted an invention disclosure to the university's Office of Technology Commercialization.

####

For more information, please click here

Contacts:
Lee Tune
University Communications
University of Maryland
301-405-4679


Professor Steven Anlage
Dept. of Physics
University of Maryland, College Park
phone: 301 405 7321

Copyright © University of Maryland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download paper:

Related News Press

News and information

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Liquid electrolyte contacts for advanced characterization of resistive switching memories July 26th, 2017

Phenom-World Launches Phenom Pro and ProX Generation 5 SEMs at Microscopy & Microanalysis Conference USA: The excellent performance in a wide range of applications offers a serious alternative to floor model SEMs July 26th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

Physics

The first light atomic nucleus with a second face July 20th, 2017

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

In atomic propellers, quantum phenomena can mimic everyday physics June 1st, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Leti Announces Backside Shield that Protects Microchips from Physical Attacks March 8th, 2017

NUS engineers develop low-cost, flexible terahertz radiation source for fast, non-invasive screening: Novel invention presents promising applications in spectroscopy, safety surveillance, cancer diagnosis, imaging and communication February 1st, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanomedicine

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Discoveries

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Liquid electrolyte contacts for advanced characterization of resistive switching memories July 26th, 2017

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Announcements

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Liquid electrolyte contacts for advanced characterization of resistive switching memories July 26th, 2017

Phenom-World Launches Phenom Pro and ProX Generation 5 SEMs at Microscopy & Microanalysis Conference USA: The excellent performance in a wide range of applications offers a serious alternative to floor model SEMs July 26th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

Patents/IP/Tech Transfer/Licensing

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Aculon Expands NanoProof® Product Line for Electronics Waterproofing Technology: With growing market opportunities Aculon Launches NanoProof® 8 with Push Through Connectivity™ and NanoProof® DAB a syringe application May 30th, 2017

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Military

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Nature-inspired material uses liquid reinforcement: Rice U. nanoengineers create liquid-solid composites using clues from nature July 11th, 2017

Meniscus-assisted technique produces high efficiency perovskite PV films July 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project