Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > The Spark Within: Light-Emitting Bioprobe Fits in a Single Cell

This scanning electron microscope (SEM) image shows a nanobeam probe, including a large part of the handle tip, inserted in a typical cell. (Photo: Gary Shambat, Stanford School of Engineering)
This scanning electron microscope (SEM) image shows a nanobeam probe, including a large part of the handle tip, inserted in a typical cell.

(Photo: Gary Shambat, Stanford School of Engineering)

Abstract:
Stanford study is the first to demonstrate that sophisticated, engineered light resonators can be inserted inside cells without damaging the host. The researchers say it marks a new age in which tiny lasers and light-emitting diodes yield new avenues in the study and influence of living cells.

The Spark Within: Light-Emitting Bioprobe Fits in a Single Cell

Stanford, CA | Posted on February 13th, 2013

If engineers at Stanford have their way, biological research may soon be transformed by a new class of light-emitting probes small enough to be injected into individual cells without harm to the host. Welcome to biophotonics, a discipline at the confluence of engineering, biology and medicine in which light-based devices - lasers and light-emitting diodes (LEDs) - are opening up new avenues in the study and influence of living cells.

The team described their probe in a paper published online February 13 by the journal Nano Letters. It is the first study to demonstrate that sophisticated engineered light resonators can be inserted inside cells without damaging the cell. Even with a resonator embedded inside, a cell is able to function, migrate and reproduce as normal.

Applications and implications

The researchers call their device a "nanobeam," because it resembles a steel I-beam with a series of round holes etched through the center. These beams, however, are not massive, but measure only a few microns in length and just a few hundred nanometers in width and thickness. It looks a bit like a piece from an erector set of old. The holes through the beams act like a nanoscale hall of mirrors, focusing and amplifying light at the center of the beam in what are known as photonic cavities. These are the building blocks for nanoscale lasers and LEDs.

"Devices like the photonic cavities we have built are quite possibly the most diverse and customizable ingredients in photonics," said the paper's senior author, Jelena Vuckovic, a professor of electrical engineering. "Applications span from fundamental physics to nanolasers and biosensors that could have profound impact on biological research."

At the cellular level, a nanobeam acts like a needle able to penetrate cell walls without injury. Once inserted, the beam emits light, yielding a remarkable array of research applications and implications. While other groups have shown that it is possible to insert simple nanotubes and electrical nanowires into cells, nobody had yet realized such complicated optical components inside biological cells.

"We think this is quite a dramatic shift from existing applications and will enable expanded opportunities for understanding and influencing cellular biology," said the paper's first author Gary Shambat, a doctoral candidate in electrical engineering. Shambat works at the Nanoscale and Quantum Photonics Lab directed by Vuckovic.

Iron to a magnet

In this case, the studied cells came from a prostate tumor, indicating possible application for the probe in cancer research. The primary and most immediate use would be in the real-time sensing of specific proteins within the cells, but the probe could be adapted to sense any important biomolecules such as DNA or RNA.

To detect these key molecules, researchers coat the probe with certain organic molecules or antibodies that are known to attract the target proteins, just like iron to a magnet. If the desired proteins are present within the cell, they begin to accumulate on the probe and cause a slight-but-detectable shift in the wavelength of the light being emitted from the device. This shift is a positive indication that the protein is present and in what quantity.

"Let's say you have a study that is interested in whether a certain drug produces or inhibits a specific protein. Our biosensor would tell definitively if the drug was working and how well based on the color of the light from the probe. It would be quite a powerful tool," explained Sanjiv Sam Gambhir, MD, co-author of the paper and chair of the Department of Radiology at the Stanford School of Medicine as well as director of Stanford's Canary Center for Early Cancer Detection.

As such, embeddable nanoscale optical sensors would represent a key development in the quest for patient-specific cancer therapies—often referred to as personalized medicine—in which drugs are targeted to the patient based on efficacy.

A clever structure

Structurally, the new device is a sandwich of extremely thin layers of the semiconductor gallium arsenide alternated with similarly thin layers of light-emitting crystal, a sort of photonic fuel known as quantum dots. The structure is carved out of chips or wafers, much like sculptures are chiseled out of rock. Once sculpted, the devices remain tethered to the thick substrate.

Shambat and his fellow engineers have been working on similar optical devices for use in ultrafast, ultra-efficient computer applications where having devices immobilized on chips and wafers does not matter so much since they will ultimately be integrated with microelectronics.

For biological applications, however, the thick, heavy substrate presents a serious hurdle for interfacing with single-cells. The underlying and all-important nanocavities are locked in position on the rigid material and unable to penetrate cell walls.

Shambat's breakthrough came when he was able to peel away the photonic nanobeams, leaving the bulky wafer behind. He then glued the ultrathin photonic device to a fiber optic cable with which he steers the needle-like probe toward and into the cell.

Similarly, anticipating that gallium arsenide could be toxic to cells, Shambat also devised a clever way to encapsulate his devices in a thin, electrically insulating coating of alumina and zirconia. The coating serves two purposes: it both protects the cell from the potentially toxic gallium arsenide and protects the probe from degrading in the cell environment.

"Stunning" results

Once inserted in the cell, the probe emits light, which can be observed from outside. For engineers, it means that almost any current application or use of these powerful photonic devices can be translated into the previously off-limits environment of the cell interior.

In one finding that the authors describe as stunning, they loaded their nanobeams into cells and watched as the cells grew, migrated around the research environment and reproduced. Each time a cell divided, one of the daughter cells inherited the nanobeam from the parent and the beam continued to function as expected.

This inheritability frees researchers to study living cells over long periods of time, a research advantage not possible with existing detection techniques, which require cells be either dead or fixed in place.

"Our nanoscale probes can reside in cells for long periods of time, potentially providing sensor feedback or giving control signals to the cells down the road," said Shambat. "We tracked one cell for eight days. That's a long time for a single-cell study."

Other contributing authors of the study include post-doctoral scholar Sri-Rajasekhar Kothapalli, research associate J Provine, doctoral candidate Tomas Sarmiento and Professor James Harris.

Funding for this study was provided by The Beckman Center for Molecular and Genetic Medicine at Stanford, the Canary Foundation and the Center for Cancer and Nanotechnology Excellence.

By Andrew Myers

Andrew Myers is associate director of communications for the Stanford University School of Engineering.

####

For more information, please click here

Contacts:
Andrew Myers

650-736-2245

Copyright © Stanford School of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Display technology/LEDs/SS Lighting/OLEDs

Unraveling the light of fireflies December 17th, 2014

TCL Launches World’s Most Advanced TV in the World’s Largest Market: New Quantum Dot TVs with Color IQ™ Optics Deliver OLED-Quality Color at a Fraction of the Price December 15th, 2014

Dartmouth researchers create 'green' process to reduce molecular switching waste December 15th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Nanomedicine

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Discoveries

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Announcements

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Nanobiotechnology

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Biomimetic dew harvesters: Understanding how a desert beetle harvests water from dew could improve drinking water collection in dew condensers December 8th, 2014

Photonics/Optics/Lasers

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE