Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Team creates MRI for the nanoscale

A tiny defect, called a nitrogen vacancy (NV), inside a diamond enabled researchers to detect the magnetic resonance of organic molecules in the same way an MRI produces images of a tissue or an organ.
A tiny defect, called a nitrogen vacancy (NV), inside a diamond enabled researchers to detect the magnetic resonance of organic molecules in the same way an MRI produces images of a tissue or an organ.

Abstract:
An international team of researchers including CCNY and the University of Stuttgart have opened the door for MRI technology at the nanoscale. Using tiny defects in diamonds they sensed the magnetic resonance of molecules to peer down to the level of atoms.

Team creates MRI for the nanoscale

New York, NY | Posted on February 13th, 2013

Magnetic resonance imaging (MRI) reveals details of living tissues, diseased organs and tumors inside the body without x-rays or surgery. What if the same technology could peer down to the level of atoms? Doctors could make visual diagnoses of a person's molecules - examining damage on a strand of DNA, watching molecules misfold, or identifying a cancer cell by the proteins on its surface.


Now Dr. Carlos Meriles, associate professor of physics at The City College of New York, and an international team of researchers at the University of Stuttgart and elsewhere have opened the door for nanoscale MRI. They used tiny defects in diamonds to sense the magnetic resonance of molecules. They reported their results in the February 1 issue of Science.

"It is bringing MRI to a level comparable to an atomic force microscope," said Professor Meriles, referring to the device that traces the contours of atoms or tugs on a molecule to measure its strength. A nanoscale MRI could display how a molecule moves without touching it.

"Standard MRI typically gets to a resolution of 100 microns," about the width of a human hair, said Professor Meriles. "With extraordinary effort," he said, "it can get down to about 10 microns" - the width of a couple of blood cells. Nanoscale MRI would have a resolution 1,000 to 10,000 times better.

To try to pick up magnetic resonance on such a small scale, the team took advantage of the spin of protons in an atom, a property usually used to investigate quantum computing. In particular, they used minute imperfections in diamonds.

Diamonds are crystals made up almost entirely of carbon atoms. When a nitrogen atom lodges next to a spot where a carbon atom is missing, however, it creates a defect known as a nitrogen-vacancy (NV) center.

"These imperfections turn out to have a spin - like a little compass - and have some remarkable properties," noted Professor Meriles. In the last few years, researchers realized that these NV centers could serve as very sensitive sensors. They can pick up the magnetic resonance of nearby atoms in a cell, for example. But unlike the atoms in a cell, the NVs shine when a light is directed at them, signaling what their spin is. If you illuminate it with green light it flashes red back.

"It is a form of what is called optically detected magnetic resonance," he said. Like a hiker flashing Morse code on a hillside, the sensor "sends back flashes to say it is alive and well."

"The NV can also be thought of as an atomic magnet. You can manipulate the spin of that atomic magnet just like you do with MRI by applying a radio frequency or radio pulses," Professor Meriles explained. The NV responds. Shine a green light at it when the spin is pointing up and it will respond with brighter red light. A down spin gives a dimmer red light.

Professor Mireles has written on the theoretical underpinnings of the work and proposed the the project to the team, led by Professor Jörg Wrachtrup — a physicist at the University of Stuttgart in Germany — with the assistance of postdoctoral researcher Friedemann Reinhard and collaborators from the University of Bochum and the University of Science and Technology of China. Professor Wrachtrup heads a leading group studying such defects.

In the lab, graduate student Tobias Staudacher — the first author in this work — used NVs that had been created just below the diamond's surface by bombarding it with nitrogen atoms. The team detected magnetic resonance within a film of organic material applied to the surface, just as one might examine a thin film of cells or tissue.

"Ultimately," said Professor Meriles, "One will use a nitrogen-vacancy mounted on the tip of an atomic force microscope - or an array of NVs distributed on the diamond surface - to allow a scanning view of a cell, for example, to probe nuclear spins with a resolution down to a nanometer or perhaps better."

####

For more information, please click here

Contacts:
Jessa Netting

212-650-7615

Copyright © City College of New York

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Wrachtrup group:

Meriles group:

Reference:

Related News Press

News and information

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Ucore's McKenzie to Deliver Presentation to Rare Earths Conference in Singapore as Highlight of Fall 2014 Marketplace Schedule October 19th, 2014

Imaging

New Grand ARM Transmission Electron Microscope Offers Highest Commercially-Available Atomic Resolution of 63 Picometers October 17th, 2014

Nanotronics Imaging Releases nSPEC® 3D, Powerful Microscope That Captures 3D Images at Nanoscale, in Lightning Speed: Company Unveils Design at American Chemical Society 2014 International Elastomer Conference October 14th, 2014

BSA Distinguished Lecture Today, 10/14: 'LCLS: A Stunning New View Through X-ray Laser Eyes' October 14th, 2014

The Körber Foundation congratulates Stefan Hell on winning the 2014 Nobel Prize October 10th, 2014

Discoveries

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

Announcements

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Ucore's McKenzie to Deliver Presentation to Rare Earths Conference in Singapore as Highlight of Fall 2014 Marketplace Schedule October 19th, 2014

Tools

New Grand ARM Transmission Electron Microscope Offers Highest Commercially-Available Atomic Resolution of 63 Picometers October 17th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Nanotronics Imaging Releases nSPEC® 3D, Powerful Microscope That Captures 3D Images at Nanoscale, in Lightning Speed: Company Unveils Design at American Chemical Society 2014 International Elastomer Conference October 14th, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

Research partnerships

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

Scientists Map Key Moment in Assembly of DNA-Splitting Molecular Machine: Crucial steps and surprising structures revealed in the genesis of the enzyme that divides the DNA double helix during cell replication October 15th, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

Bio-inspired 'nano-cocoons' offer targeted drug delivery against cancer cells October 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE